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RCs for N f = 2 Wilson fermions and tree-level improved gauge action P. Dimopoulos

1. Introduction

We compute quark bilinear renormalisation constants (RCs), based on the ETMC N f = 2
dynamical quark action which consists of a tree–level improved Symanzik gauge action and twisted
mass (tm) Wilson fermions at maximal twist [1]. Our results are automatically improved in the
spirit of ref. [2]. In section 2 we present a new (non-perturbative) method for the calculation of
the scale independent RCs, ZA and ZP/ZS, based on the use of two valence quark actions and a
standard calculation of ZV within the tm valence quark sector. In section 3 we describe the RI-
MOM calculation of all RCs (both scale dependent and scale independent ones).

2. Calculation of the scale independent RC

In this section we present a calculation of the scale independent RCs, namely ZV , ZA, ZP/ZS.
The evaluation of ZV is based on the PCAC Ward identity method (see refs. [3] for details). This
calculation leads to very precise results. The computational method for ZA and ZP/ZS is new. It is
based on the use of two regularisations for the valence quark actions. One is the standard twisted
mass action, while the other is the Osterwalder–Seiler (OS) variant [4]. In the so called physical
basis these actions can be compactly written in the form:

Sval = a4 ∑
x

ψ̄(x)(γ∇̃− iγ5 r Wcr + µq)ψ(x) , (2.1)

with Wcr = − a
2 ∑µ ∇∗

µ∇µ +Mcr(r = 1), ψ = (u d)T , r = diag(ru rd) and µq = diag(µu µd). The
twisted mass case corresponds to ru = −rd = ±1, while the Osterwalder-Seiler case is obtained
taking ru = rd = ±1. Sea quarks are regularized in the standard tm framework.

Consider that, for the two different choises of the matrix r, we perform the following two
axial transformations of the quark fields, namely (u,d) = exp[i(γ5τ3π/4)](u

′
,d

′
) and (u,d) =

exp[i(γ5π/4)](u
′
,d

′
), respectively. Each of the actions (2.1) transforms respectively into an ac-

tion with the Wilson term in the standard form (no γ5 and no τ3). This is a rotation into the tm
basis at maximal twist. However the tm action has a mass term of the form iµψ̄ ′γ5τ3ψ ′ , while
the OS one has iµψ̄ ′γ5ψ ′ . Consider, now, an operator OΓ defined in the physical basis. Under the
two axial trasformations this operator transforms into two operators, called OΓ̃ and O ˜̃Γ, which, in
general, are not of the same form. However the respective renormalised matrix elements between
given physical states have to be equal up to O(a2) effects. This is due to the fact that in the con-
tinuum limit each of them should coincide, up to O(a2), with the corresponding matrix element of
the unique physical operator, OΓ. Therefore, if we call ZOΓ̃

and ZO ˜̃Γ
the respective renormalisation

constants for the two operators, we have:

ZOΓ̃
〈OΓ̃〉

tm = ZO ˜̃Γ
〈O ˜̃Γ〉

OS +O(a2) . (2.2)

Renormalisation constants are named, as usual, after the basis in which the Wilson term has its
standard form. For maximal twist, the operator renormalization pattern in the physical and twisted
bases is shown in Table 1 for both OS and tm formalisms. The primed operators refer to the tm
basis while the unprimed ones to the physical basis and we have adopted the notation, OΓ = ūΓd,
for both the primed and unprimed case.
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OS case tm case
(AR)µ,ud = ZAAµ,ud = ZAA

′

µ,ud (AR)µ,ud = ZV Aµ,ud = −iZVV
′

µ,ud

(VR)µ,ud = ZVVµ,ud = ZVV
′

µ,ud (VR)µ,ud = ZAVµ,ud = −iZAA
′

µ,ud

(PR)ud = ZSPud = iZSS
′

ud (PR)ud = ZPPud = ZPP
′

ud

Table 1: Renormalization pattern of the bilinear quark operators for the OS and tm case at maximal twist.

Calculation of ZP/ZS: Our method is based on comparing the amplitude gπ =< 0|P|π >,
computed both in tm and OS formalisms. We start by considering, in the physical basis, the correla-
tor CPP(t)≡∑x < ūγ5d(x) d̄γ5u(0) >, which at large times behaves like CPP(t)' |gπ |

2

2mπ
[exp(−mπt)+

exp(−mπ(T − t))]. In the twisted basis, this corresponds to CS′S′ (t) in the OS case and CP′P′ (t) in
the tm one. Based on Table 1, this translates into

[gπ± ]cont = ZP [g′π± ]tm +O(a2) = ZS [g′π ]OS +O(a2) , (2.3)

from which the ratio ZP/ZS is extracted.
Calculation of ZA: We undertake the calculation of fπ in both OS and tm regularisations. In

the tm case we use the Ward identity evaluation of the decay constant: f tm
π± = 2µqgπ/m2

π . Note
that in this case no renormalisation constant is needed [5]. Thus the pion decay constant can be
extracted from the large time asymptotic behaviour of CPP(t) as it is discussed above.

For the OS case we use the correlators CPP and CA0P (with ru = rd = ±1). The large time
asymptotic behaviour of the former correlator has been discussed above, while the latter goes like
CA0P(t) '

ξA0P

2mπ
[exp(−mπt)− exp(−mπ(T − t))]. Combining these, we can extract the bare OS

estimate of the pion decay constant as f OS
π = ξA0P/gπmπ . Since the tm and OS determinations of

the (properly normalized) decay constant satisfy the relation

[ fπ± ]cont = f tm
π± +O(a2) = ZA f OS

π +O(a2) , (2.4)

an estimate of ZA is readily obtained. Since all computations are performed at finite mass, the
final results for ZA and ZP/ZS are finally obtained by extrapolation to the chiral limit. Moreover,
maximal twist ensures that cut–off effects are of order O(a2) ([2],[4]).

2.1 Results

Our configuration ensembles for N f = 2 sea quarks have been generated at three values of the
gauge coupling, β = 3.80, 3.90 and 4.05, corresponding to lattice spacings a ∼ 0.10,0.09 and 0.07
fm. We have performed 240 measurements for the two smallest β -values and 150 measurements for
the highest one. In order to significantly reduce autocorrelation times, correlators were computed
every 20 trajectories (each having trajectory length equal to τ = 1/2). Five sea quark masses have
been simulated at β = 3.90 and four at the other two couplings. The smallest sea quark mass
corresponds to a pion of about 300 MeV and the higher one is just above half the strange quark
mass. Eight valence quark masses were used at each coupling; the lowest ones are equal to the sea
quark masses, whereas the others rise to the region of the strange quark mass. For the inversions in
the valence sector we have made use of the stochastic method (one–end trick of ref. [6]) in order
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β 3.80 3.90 4.05
ZA 0.72(2)(1) 0.76(1)(1) 0.76(1)(1)

ZP/ZS 0.47(2)(1) 0.61(1)(1) 0.66(1)(1)
ZV 0.5814(2)(2) 0.6104(2)(3) 0.6451(2)(3)

Table 2: The results for the scale independent RCs for three values of the gauge coupling.

to increase the statistical information. Propagator sources are at randomly located timeslices. This
turned out to be an optimal way to reduce the autocorrelation time. Typical plots on the quality of
the signal for the RCs (for fixed values of the bare coupling and masses) are shown in Fig. 1.
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Figure 1: Asymptotic behaviour of scale independent normalisation constants

Three methods were implemented in the RC computation. The first consists in calculating the
RCs at fixed value of the sea quark mass for a number of valence quark masses and taking the
“valence chiral limit"1. Subsequently, the RCs were quadratically extrapolated to the sea quark
chiral limit 2. The second method consists in inverting the order of the two chiral limits. The third
method is simply the extraction of the RCs from the subset of data satisfying µval = µsea, which
allows to reach the chiral limit with one single extrapolation in the quark mass. Our results from
all three methods are compatible within one standard deviation. We present preliminary data from
the second method, which has fits of better quality, in Table 2. The first error is statistical while the
second is systematic coming from the difference between the central values of the various methods.
A final analysis will be presented in a forthcoming publication.

1First and second degree polynomial fits in µval have been performed.
2A quadratic dependence on aµsea is expected from the form of the sea quark determinant, assuming that lattice

artifacts on the RCs are not sensitive to spontaneous chiral symmetry breaking. However we have verified that a linear
fit in µsea leads to compatible results.
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3. RI-MOM calculation

The RI-MOM method is a non–perturbative, mass independent, renormalisation scheme pro-
posed in ref. [7]. For a detailed presentation of various technical aspects see ref. [8]. In our case the
scheme consists in fixing the Landau gauge and computing the momentum space Green function

Gud
Γ (p, p′) = ∑

x,y
〈u(x)(ūΓd)0d̄(y)〉e−ip·x+ip′·y , (3.1)

for a general quark bilinear operator ūΓd (with Γ = A,V,S,P,T ) and the propagator is written as,
Sq = ∑x〈q(x)q̄(0)〉e−ip·x with q = u,d.

Then the forward amputated Green function, Λud
Γ = Su(p)−1Gud

Γ (p, p)Sd(p)−1 , is projected by a
suitable projector PΓ (essentially a properly normalized Dirac matrix). The RCs, ZΓ and Zq are
obtained by imposing the RI-MOM renormalization conditions

Zud
Γ (ZuZd)

−1/2Γud
Γ (p)|p2=µ2 ≡Zud

Γ (ZuZd)
−1/2Tr[Λud

Γ PΓ]|p2=µ2 = 1, Zq
i

12Tr

[

6pSq(p)−1

p2

]

p2=µ2

= 1.

(3.2)
The computation is done for fixed quark masses. The results are extrapolated to the chiral limit.
The renormalisation scale µ has to satisfy the condition: ΛQCD � µ � π/a.

The RCs, calculated in the chiral limit in the way described above, are O(a) improved at large
momenta [8]. Moreover an analysis based on the symmetries of MtmLQCD and the O(4) symmetry
of the underlying continuum theory shows that Γud

Γ (p) and Γdu
Γ (p) are separately O(a) improved

for all momenta. In order to increase the statistical information, we computed the following com-
binations: ZΓ = (Zud

Γ +Zdu
Γ )/2 and Zq = (Zu +Zd)/2 .

The scale dependent RCs (ZP,ZS and ZT ) are obtained at a reference scale µ0 = a−1, by can-
celling the scale dependence µ , at a sufficiently high order in perturbation theory:

ZΓ(aµ0) = ( ZΓ(aµ)/CΓ(µ) ) CΓ(µ0) . (3.3)

Here CΓ = exp
∫ α(µ) dα [γΓ(α)/β (α)] and γΓ, β are the anomalous dimension of the operator and

the beta function respectively. They are known at N2LO for ZT and N3LO for ZS and ZP [9].
It is known that the RI-MOM estimate of ZP is contaminated by the presence of a Goldstone

pole [10]. In the twisted mass theory this problem also arises for ZS, though O(a2) suppressed. All
these contaminations are removed in the subtracted Green function [11]:

Γsub
P,S (p2,µq1 ,µq2) =

µq1ΓP,S(p2,µq1)−µq2ΓP,S(p2,µq2)

µq1 −µq2

(3.4)

where µq1 ,µq2 are non–degenerate valence quark masses.

3.1 Results

The simulation parameters are the same as those of section 2.1. The RCs, computed at fixed
sea quark mass and several valence quark masses, are first linearly extrapolated to the valence
chiral limit. Subsequently, the sea quark chiral limit is obtained by linear extrapolation in µ 2

sea. In
Fig. 2 we show the effect of the Goldstone boson subtraction for ZP and ZS for which the subtracted
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Figure 2: Goldstone pole subtraction at β = 3.90; ZΓ(aµ0) of Eq. (3.3) is plotted against (aµ)2.

β ZA ZP/ZS ZV ZP ZS ZT

3.80 0.75(3) 0.47(3) 0.62(4) 0.30(1) 0.64(2) 0.73(4)
3.90 0.76(2)(1) 0.63(2)(3) 0.65(2)(3) 0.39(1)(2) 0.62(1)(5) 0.75(1)(2)
4.05 0.77(1) 0.65(2) 0.67(1) 0.40(1) 0.61(1) 0.79(1)

Table 3: RI-MOM results for the RCs. ZP, ZS and ZT are calculated at scale µ0 = a−1 (see Eq. (3.3)). The
results at β = 3.80 and 4.05 are preliminary and the quoted errors are purely statistical in these cases.

Green function of Eq. (3.4) has been used; we see that this has an important effect on ZP, while ZS

is almost unaffected, as expected. Moreover, we note from Fig. 2 that once the scale evolution has
been perturbatively divided out, the scalar RC is indeed scale independent, while the pseudoscalar
one is still subject to large discretization effects. These are removed by linear extrapolation, giving
a ZP final estimate as the intercept of the fit.

In Table 3 we show our preliminary results for the RCs; for β = 3.80 and 4.05 the results
correspond to the lighter value of the sea quark mass only. For β = 3.90 the results come from
a full analysis in the valence and the sea sector. The first error is statistical and the second is
systematic due to an estimate of the O(a)-contribution to the quark propagator which induces an
O(a2) correction in the determination of the RCs. A better estimate of the systematic errors will be
available once we finalize the analysis on all the three values of lattice spacing.

A first comparison for β = 3.90 between the results of Tables 2 and 3 shows that the values of
ZA and Zp/ZS are in nice agreement and of comparable statistical accuracy. The corresponding ZV

results, though compatible within the quoted errors, show that the PCAC Ward Identity estimate is
statistically more precise3.

3A slightly different determination based on the same WI taken between two one–pion states gives very similar
results; for example, for β = 3.90 it is found, ZV = 0.6109(2) [12]. Moreover from the Table 1 we find that the value of
the ratio (ZA/ZV )2|β=4.05 is consistent with the one found in [13].
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We would like to note that combining the result of ZP/ZS from the first method with that
of ZS from RI-MOM, an alternative evaluation of ZP can be obtained, in which the problem of
the pseudoscalar Goldstone boson pole subtraction is avoided4. For example, for β = 3.90 this
calculation gives ZP = 0.38 which is compatible, within the errors, with the corresponding value
given by the RI-MOM calculation (see Table 3). The results of a precise statistical analysis will be
given in a forthcoming publication.
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