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We explain how the strategy of solving renormalization problems in HQET non-perturbatively by

a matching to QCD in finite volume can be implemented to include dynamical fermions. As a

primary application, some elements of an HQET computation of the mass of the b-quark beyond

the leading order withNf = 2 are outlined. In particular, the matching of HQET and QCD requires

relativistic QCD simulations in a volume withL≈ 0.5fm, which will serve to quantitatively deter-

mine the heavy quark mass dependence of heavy-light meson observables in the continuum limit

of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our deter-

mination of the renormalization constants and improvementcoefficients relating the renormalized

current and subtracted bare quark mass in the relevant weak coupling region. The calculation of
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where the box sizeL is fixed by working at a prescribed value of the renormalized coupling.
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Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

1. Introduction

In the light of the expected progress in flavour physics thanks to the impending B-physics
experiments [1, 2], precision lattice QCD more and more becomes to play a crucial rôle for a quan-
titative and accurate interpretation of these experimental results in the framework of the Standard
Model and beyond, since it provides a theoretically sound approach to non-perturbatively compute
the contributing matrix elements of operators among hadronic states.

A particular problem of dealing with heavy-light systems involving the b-quark as the heavy
flavour by means of lattice QCD consists in the two disparate intrinsic scales thatactually accom-
pany any lattice calculation: the lattice spacing,a, has to be much smaller than 1/mb in order to
allow for a fine enough resolution of the B-meson states in question, and the linear extent of the
lattice volume,L, has to be large enough for finite-size effects to be under control. Heavy Quark
Effective Theory (HQET) on the lattice [3, 4], however, which relies upon a systematic expansion
of the QCD action and correlation functions in inverse powers of the heavyquark mass (m) around
the static limit, offers a formally reliable solution to this problem. Still, for lattice HQET and its
numerical applications to lead to precise results with controlled systematic errors in practice, two
shortcomings had to be left behind first.

One is the exponential growth of the noise-to-signal ratio in static-light correlation functions,
which is a consequence of the appearance of power divergences in the effective theory. As demon-
strated in studies in the quenched approximation [5 – 9] as well as in the theorywith Nf = 2 dy-
namical quarks [10], this problem can be overcome by a clever modificationof the traditional
Eichten-Hill discretization of the static action.

Another difficulty, more serious on the theoretical level, is associated with theaforementioned
power divergences. Since in the effective theory mixings among operators of different dimensions
are present, already the static limit of HQET is affected by a power-law divergent (∼ g2

0/a) additive
mass renormalization. Unless the theory is renormalized non-perturbatively[11], it follows from
this power-law divergence of lowest-order HQET — and, of course, from further ones∼ g2

0/an+1

that arise at O(1/mn), n≥ 1 — that the continuum limit does not exist owing to a remainder, which,
at any finite order [12 – 14] in perturbation theory, diverges in the continuum limit.

In ref. [15] a general solution to the latter has been worked out and numerically implemented
for a determination of the b-quark’s mass in the static and quenched approximations as a test case.
The method is based on anon-perturbative matching of HQET and QCD in finite volume. It was
subsequently extended to also include the O(1/m) terms into the quenched computations of the
mass of the b-quark,mMS

b (mb) [16] (see refs. [17, 18] for recent reviews in broader context), and
of the B-meson decay constant [19].

An attractive property of the strategy, briefly summarized in Section 2, is thatmost parts of the
actual calculation do not involve very large lattices. Hence, it is natural to remove the quenched
approximation as the dominating remaining systematic uncertainty in our previous works using
this method. The additional computational effort required if dynamical quarks are included is
only moderate, except for the last step that involves the extraction of B-meson properties from
simulations in physically large volumes (with spatial extents of≈ 2fm or more) and thus will be
computationally much more demanding than the finite-volume simulations for the non-perturbative
renormalization part.
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Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

In the present report we outline the various steps towards an HQET computation of the mass of
the b-quark including the O(1/m) correction along the lines of refs. [15, 16] in two-flavour lattice
QCD, where most of the emphasis is put on the renormalization of the effective theory through
the non-perturbative matching to QCD in finite volume in order to perform the power-divergent
subtractions. This step requires, in particular, a determination of the relationbetween the renormal-
ization group invariant (RGI) and the subtracted bare heavy quark massin the relevant parameter
region ofNf = 2 QCD, which we present together with numerical results on the corresponding
renormalization constant and improvement coefficients in some detail in Section3. Results from
the matching itself, which has just been started at the time of writing, as well as from the necessary
simulations of the effective theory in small and intermediate volumes will only be available at later
stages of our project.

2. Survey of the computational steps
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Figure 1: The strategy for performing computations in lattice HQET via a non-perturbative determination
of the HQET parameters from QCD simulations in a small volume. It is designed such that steps indicated
by arrows are to be repeated at smaller lattice spacings to reach a continuum limit.

Let us briefly recall the general strategy, introduced in [15]. It allowsfor a formulation of
(zero-velocity) HQET in the framework of lattice QCD, where all steps of thecomputations includ-
ing the renormalization are carried out non-perturbatively and the continuum limit can be taken.

The basic idea is illustrated in figure 1 and starts from a finite volume of extentL1 ≈ 0.5fm.
There, one chooses lattice spacingsa sufficiently smaller than 1/mb such that the b-quark propa-
gates correctly up to controllable discretization errors of ordera2. Since the relation between the
RGI mass and the bare mass in QCD is known [20], suitable finite-volume observablesΦk(L1,Mb)

can be calculated as a function of the RGI b-quark mass,Mb, and extrapolated to the continuum
limit. The next step is to perform the power-divergent subtractions non-perturbatively by a set of
matching conditions, in which the results obtained forΦk are equated to their representation in
HQET (r.h.s. of figure 1). At the same physical value ofL1 but for resolutionsL1/a = O(10), the
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Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

previously computed heavy-quark mass dependence ofΦk(L1,Mb) in finite-volume QCD may be
exploited to determine the bare parameters of the effective theory fora ≈ (0.025− 0.05) fm. In
order to evolve the HQET observables to large volumes, where contact withexperiments can be
made, one also computes them at these lattice spacings in a larger volume,L2 = 2L1. The resulting
relation betweenΦk(L1) andΦk(L2) is encoded in associated step scaling functionsσk, as indicated
in figure 1 as well. Finally, the knowledge ofΦk(L2,Mb) and employing resolutionsL2/a = O(10)
fixes the bare parameters of the effective theory fora ≈ (0.05− 0.1) fm so that a connection to
those lattice spacings is established, where large-volume observables, such as the B-meson mass
or decay constant, can be calculated (l.h.s. of figure 1).

Having in mind the computation ofMb as the specific application, this sequence of steps yields
an expression ofmB (taken to be the physical input) as a function ofMb via the quark mass depen-
dence ofΦk(L1,Mb), which eventually can be inverted to arrive at the desired physical valueof
the RGI b-quark mass extracted from the effective theory. As pointed out before, the whole con-
struction is such that its various pieces separately have a continuum limit. With therealization
of this strategy for the quenched case it was shown in ref. [16] that a determination ofMb in-
cluding O(1/m) in HQET only requires up to three matching observables,Φ1, Φ2 andΦ3, if the
spin-averaged B-meson mass is used as physical input. That is also the path we will follow in our
present extension to the case of two-flavour QCD.

2.1 Definition of the matching volume

We consider QCD withNf = 2 mass-degenerate dynamical quarks, which are identified with up
and down. All other quarks are treated in the quenched approximation. A particularly convenient
renormalization scheme, in which finite-volume observables suitable for a non-perturbative match-
ing of the effective theory with QCD can readily be constructed [15, 21, 22], is the Schrödinger
functional (SF) [23]. Relativistic and static quarks were introduced in [24] and [25], respectively,
where in the latter reference it was found that the HQET expansion of the boundary quark fields is
trivial up to and including 1/m–terms.1 Adopting any unexplained notation from refs. [15, 25], we
only mention the periodicity phaseθ of the fermion fields as a further kinematic parameter and the
fact that homogeneous Dirichlet boundary conditions in time atx0 = 0 andx0 = T are employed.
Since the parametersθ and masses of the quenched quarks can be set independently of those of
the sea quarks, the basic situation for extracting heavy-light physics from SF correlation functions
is the same as in the quenched approximation [15, 16]. Moreover, in the finite-volume simulations
we setθ = 0.5 for the dynamical light quarks and their PCAC mass to zero,ml = 0.

The quantitiesΦk that enter the non-perturbative matching procedure described above have
to be evaluated in the continuum limit. To this end we want to compute them for a series of
bare parameters(L/a,β ,κl) such that the renormalized parameters in the light quark sector are
fixed and thereby physics is kept constant along the approach to the continuum limit. Here,κl

denotes the hopping parameter of the dynamical light quarks. Ourconstant physics conditionon
the renormalized SF coupling, ¯g2(L), and the light quark mass reads

ḡ2(L0) = 2.989, L0 =
L1

2
, L0ml(L0) = 0. (2.1)

1From now on,m generically denotes the mass parameter of the heavy quark treated in the effective theory, while
the masses of the non-degenerate quark flavours in the relativistic theory are distinguished explicitly where necessary.
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This choice nowdefinesthe spatial extentL1 of the volume, in which the matching between HQET
and QCD is performed. Although an exact knowledge ofL1 in physical units in not yet needed at
this stage, one can already infer from the known running of the SF coupling for Nf = 2 [26] that
L1 ≈ 0.5fm. Hence, we will finally haveL2 = 2L1 ≈ 1fm and thusL∞ ≡ 4L1 ≈ 2fm for the large
volume, which is well consistent with the envisaged strategy, figure 1.

We have fixed ¯g2(L1/2) = 2.989 by a new simulation atL0/a= 20,T = L0, and made tentative
interpolations inβ = 6/g2

0 for givenL0/a≤ 16 to this target value, based on the known dependence
of the SF coupling and the current quark mass on the bare parameters(β ,κ) available from the data
of ref. [26]. Using the knownβ–function and our experience from the quenched calculation [16],
we can estimate that an uncertainty of about 0.04 in the coupling will translate via the resulting one
in L1 into an uncertainty in the b-quark mass of at most 0.5%. The condition of zero light quark
mass in eq. (2.1) is met by settingκ ≡ κl to the critical hopping parameter,κc, estimated again
on basis of published data [26], whereby a slight mismatch of|L0ml(L0)| < 0.05 of this condition
is tolerable in practice. The triples(L0/a,β ,κl), which approximately define the extentL1 of the
matching volume through eq. (2.1) and which are used in our subsequent study of improvement
and renormalization factors, are collected in columns 2 – 4 of table 1 in Section 3.

The preliminary interpolation procedure for ¯g2(β ) underlying theseβ–values is currently be-
ing checked (and refined) by direct simulations, in order to avoid a non-negligible systematic error
from small violations of the condition (2.1) on the final results. Yet, this will affect our estimates
of bm andZ in Section 3 only at a negligible level, because there any deviation from the lineof
constant physics only entails a small change of the O(a2) effects.

2.2 Fixing the heavy quark mass in finite-volume QCD

Having fixedL1 via enforcing constant physics atL0 = L1/2, the computation of the heavy
quark mass dependence of the finite-volume observablesΦk, which is the key element in the non-
perturbative matching step within our strategy, will amount to evaluate heavy-light SF correlation
functions in a volumeL3

1×T, T = L1, for a series of precisely fixed values of the renormalized
heavy quark mass covering the b-quark mass region.

This is achieved by exploiting the O(a) improved relation between the (subtracted) bare heavy
quark massmq,h and the RGI mass [20, 27], viz.

M = h(L0)Zm(g0,L0/a) mq,h
(
1+bm(g0)amq,h

)
+ O

(
a2) , (2.2)

where

Zm(g0,L0/a) =
Z(g0)ZA(g0)

ZP(g0,L0/a)
, amq,h =

1
2

(
1
κh

−
1
κc

)
(2.3)

andZA is known non-perturbatively from ref. [28]. The scale dependent renormalization constant
ZP may be calculated for the relevant couplings onL3

0×T lattices withT = L0 in the same way as
in ref. [20]. The factor

h(L0) =
M

m(µ0)
= 1.521(14) , µ0 =

1
L0

=
2
L1

, (2.4)

represents the universal, regularization independent ratio of the RGI heavy quark mass,M, to the
running quark massm in the SF scheme at the renormalization scaleµ0. h(L0) was evaluated by a
reanalysis of theNf = 2 non-perturbative quark mass renormalization data published in ref. [20].

5
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Therefore, in order to specify the hopping parameters of the heavy flavour,κh, which according
to eq. (2.2) for givenL1/a= 2L0/aandβ = 6/g2

0 correspond to a series of dimensionless RGI quark
mass valuesz≡ L1M in the b-quark region, it remains to accurately determine the improvement
coefficientbm and the renormalization constantZ. We discuss this computation for the relevant
weak coupling range (cf. table 1) of O(a) improved two-flavour lattice QCD in the next section.

2.3 Preparing for the finite-volume computations

2.3.1 Matching to QCD

As mentioned in the foregoing subsection, on the QCD side this step consists in calculating the
quark mass dependence of the quantitiesΦ1, Φ2 andΦ3 in the volumeL4

1. For the exact definitions
of these effective heavy-light meson energies in terms of SF correlatorswe refer to ref. [16]. In
addition toL3

1×T, T = L1, lattices withT = L1/2 will also be needed (cf. Appendix C of [16]).

The aforesaid fine-tuning ofβ for L1/(2a) ≤ 16 to satisfy the condition ¯g2(L1/2) = 2.989,
eq. (2.1), with a precision∆ḡ2 . 0.04 requires up to(L1/a)4 = (2L0/a)4 = 404 lattices withNf = 2
at sea quark parameters close to those quoted in table 1 in order to reach thecontinuum limit.

2.3.2 Parameters for HQET simulations inL3
1×T with T = L1,L1/2

For the determination of the step scaling functionsL1 → L2 = 2L1 belonging to theΦk’s coun-
terparts in HQET, we must fix the simulation parameters for resolutions 6≤ L1/a≤ 16. The cor-
responding constraint on the renormalized coupling atL1 is ḡ2(L1) = σ(2.989) = 4.484(48) [26].

As a starting point for the tuning of ¯g2(L1) at eachL1/a, we introduce another low-energy
scale,L∗, defined via ¯g2(L∗) = 5.5 and obeying [29]

ln(L∗/a) = 2.3338+1.4025(β −5.5) , β ∈ [5.3, 5.8] , L∗/a∈ [7.8, 16.1] , (2.5)

which allows to estimate the ratior1 = L1/L∗ ≈ 0.8 in the continuum limit. Trialβ–estimates for
the range ofL1/a in question are then obtained from the parameterization (2.5) and improved by
further simulations, aiming at a precision of∆ḡ2 . 0.1. This will be finished soon.

Small mismatches of the simulation results w.r.t. the target values, i.e. ¯g2(L1) = 4.484 and
L1ml(L1) = 0, may be corrected by the non-perturbativeβ–function and the mass derivative of the
coupling [26, 29].

2.3.3 Parameters for HQET simulations inL3
2×T with T = L2,L2/2

To prepare for the power-divergent subtractions in the volume of extent L2 = 2L1 ≈ 1fm within
the effective theory that eventually provide the link to HQET observables inthe physically large
volume (of extentL∞), the two-flavour theory will have to be simulated at typical resolutions of
aboutL2/a = 8,12,16 and lattice spacings corresponding to 5.3 . β . 5.9.

For fixing the necessary simulation parameters by means of the condition of fixed coupling
ḡ2(L2), one can rely again on the scaleL∗ and its ratio toL2, r2 = L2/L∗|continuum≈ 1.6, and infer
the wanted pairs(L2/a,β ) from eq. (2.5).

6
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3. Computation of the missing improvement and renormalization factors

We now present our non-perturbative determination of the improvement coefficientbm and the
renormalization constantZ in the β–range relevant for the matching of HQET to QCD in small
volume, such that the RGI heavy quark mass can be set to desired valuesz= L1M.

Our generation of unquenched gauge configurations with SF boundaryconditions forNf = 2
O(a) improved massless Wilson quarks employs the hybrid Monte Carlo (HMC) algorithm [30] in
its variant used in the study of autocorrelation times in ref. [31]. It comprises multi-time-scale inte-
gration schemes [32, 33] with mass preconditioning [34 – 36] on top of even-odd preconditioning.

3.1 Non-degenerate current quark masses and estimators forbA −bP, bm and Z

We proceed following the idea of imposing improvement conditions at constantphysics, which
was first advocated in [27] and already applied to the present situation but for Nf = 0 in [21].

Since the definition (2.1) ofL1 via the renormalized coupling ¯g2(L1/2) = ḡ2(L0), respectively
the bare parameters in columns 2 – 4 of table 1 complying with it, have such a constant physics
condition built in from the start, we can directly work at those pairs of(L0/a,β ). With this as our
choice of improvement condition, supplemented by the SF-specific settings ofzero boundary fields,
θ = 0.5 and — just for the purpose of this section —T/L0 = 3/2, the improvement coefficients
bA −bP andbm and the renormalization constantZ become smooth functions ofg2

0 in the region
where they are needed.2

Taking over any unexplained notations and details from refs. [21, 27] (and references therein),
bA −bP, bm andZ can be determined by studying QCD with non-degenerate valence quarks.Treat-
ing the latter in the quenched approximation, the structure of the O(a) improved theory in conjunc-
tion with a massless renormalization scheme retains the relative simplicity of theNf = 0 case elabo-
rated in ref. [27]. For instance, the improvement of the off-diagonal bilinear fieldsX± = X1± iX2,
X = Aµ ,P, emerging as a consequence of the broken isospin symmetry in flavour space, is the same
as in the degenerate case, except that theb–coefficients now multiply the average12(amq,i +amq, j)

of the subtracted bare quark masses,mq,i = m0,i −mc, which themselves are separately improved
for each quark flavour:

m̃q,i = mq,i
(
1+bmamq,i

)
. (3.1)

(Here and below the indicesi, j label the different quark flavours.) Identifying the valence flavours
in the isospin doublet with a light (strange) and a heavy (bottom) quark, the corresponding PCAC
relation reads

∂µA±
µ (x) = (mi +mj)P

±(x) , (3.2)

and the renormalization constantsZA andZP that come into play upon renormalization are just
those known in the theory with two mass-degenerate quarks.

Accordingly, the SF correlation functions involving the axial current andthe pseudoscalar
density generalize tof i j

A (x0) = −1
2

〈
A+

0 (x)O−
〉

and f i j
P (x0) = −1

2 〈P
+(x)O−〉, with pseudoscalar

boundary sources decomposed asO± = O1± iO2 whereOa = a6 ∑y,z ζ̄ (y)γ5
1
2 τa ζ (z). Then the

2Although the difference of coefficientsbA −bP is actually not needed for fixing the RGI mass through eq. (2.2),
we include it in the present discussion.
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improved bare PCAC (current) quark masses3 as functions of the timeslice locationx0 are given by

mi j (x0;L0/a,T/L0,θ) =
∂̃0 f i j

A (x0)+acA∂∗0∂0 f i j
P (x0)

2 f i j
P (x0)

, (3.3)

where only here we explicitly indicate their additional dependence onL0/a, T/L0 andθ . In the
degenerate case,i = j, the correlators assume the standard form, andmi j just reduces to the current
quark mass of a single quark flavour that is prepared by a corresponding choice of equal values for
the associated hopping parameters,κi = κ j . Also the precise definition of the lattice derivatives in
eq. (3.3) matters. As it is written there,∂̃0 = 1

2(∂0+∂∗0) denotes the average of the ordinary forward
and backward derivatives, but as in refs. [21, 27] we have used the improved derivatives

∂̃0 → ∂̃0
(
1− 1

6 a2∂∗0∂0
)

, ∂∗0∂0 → ∂∗0∂0
(
1− 1

12 a2∂∗0∂0
)

(3.4)

as well, which (when acting on smooth functions) have O(g2
0a2,a4) errors only.

For their numerical calculation, the coefficientsbA −bP, bm and the finite factorZ = ZmZP/ZA

(see eq. (2.3)) are isolated by virtue of the identity

mi j = Z
[

1
2

(
mq,i +mq, j

)
+ 1

2 bm
(
am2

q,i +am2
q, j

)
− 1

4 (bA −bP)a
(
mq,i +mq, j

)2
]

+ O
(
a2) . (3.5)

It is obtained by equating the expression for the O(a) improved renormalized quark mass in terms
of the bare PCAC mass with the alternative expression in terms of the subtracted bare quark mass.
Forming ratios of suitable combinations of degenerate and non-degeneratecurrent quark masses in
the representation (3.5) then enables to derive direct estimators forbA −bP, bm andZ [27]:

RAP =
2(2m12−m11−m22)

(m11−m22)(amq,1−amq,2)
= bA −bP + O

(
amq,1 +amq,2

)
, (3.6)

Rm =
4(m12−m33)

(m11−m22)(amq,1−amq,2)
= bm + O

(
amq,1 +amq,2

)
, (3.7)

with m0,3 = 1
2(m0,1 +m0,2), neglecting other quark mass independent lattice artifacts of O(a). For

the renormalization constantZ an analogous formula holds even up to O(a2) corrections,

RZ =
m11−m22

mq,1−mq,2
+ (bA −bP−bm)(am11+am22) = Z + O

(
a2) , (3.8)

if the correct value forbA −bP−bm = RAP−Rm (only involving correlation functions with mass
degenerate quarks) is inserted. Note that generically the combinationZ = ZmZP/ZA is a function
of the improved bare coupling, ˜g2

0 = g2
0(1+ bgamq). Since, however, we only consider light sea

quarks that are massless (i.e. such thatml ≈ 0) and the valence quarks are anyway treated in the
quenched approximation, this fact can be ignored here.

Still, to complete our definition of the line of constant physics, values for the bare PCAC
masses of the valence quarks must be selected. As in [21], we consider two pairs,

choice 1 : L0m11 ≈ 0, L0m22 ≈ 0.5, (3.9)

choice 2 : L0m11 ≈ 0, L0m22 ≈ 2.4. (3.10)

3This expression for the PCAC masses is only O(a) improved up to a factor 1+ 1
2(bA −bP)(amq,i +amq, j ) for quark

mass dependent cutoff effects.
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set L0/a β κl κh L0m22 bA−bP bm Z

1 10 6.1906 0.136016 0.134318 0.4929(6) −0.0006(9) −0.6643(9) 1.1046(1)

12 6.3158 0.135793 0.134378 0.4952(9) −0.003(2) −0.668(2) 1.1050(2)

16 6.5113 0.135441 0.134387 0.492(1) −0.006(2) −0.667(3) 1.1044(2)

20 6.6380 0.135163 0.134356 0.5005(9) −0.005(3) −0.669(3) 1.1038(2)

2 10 6.1906 0.136016 0.127622 2.2909(5) +0.0727(4) −0.5655(3) 1.0954(1)

12 6.3158 0.135793 0.128755 2.3475(7) +0.0513(5) −0.5785(5) 1.0974(1)

16 6.5113 0.135441 0.130146 2.407(1) +0.0297(7) −0.5964(8) 1.0995(1)

20 6.6380 0.135163 0.130965 2.4433(8) +0.0215(6) −0.6076(8) 1.1002(1)

Table 1: Lattice parameters and numerical results on the improvement coefficientsbA −bP andbm and on
the renormalization constantZ. The parameters(L0/a,β ,κl) referring to the light (sea) quark sector have
fixed SF coupling, ¯g2(L0) = 2.9(1), and vanishing quark mass such as to meet the constant physics condition
of Section 2.1. Our results forbA −bP, bm andZ are based on statistics varying from O(300) measurements
(L0/a = 20) to O(2000) measurements (L0/a = 10). The upper set refers to “choice 1”, eq. (3.9), where
the heavy quark mass is kept atL0m22 ≈ 0.5, while the lower set belongs to “choice 2” withL0m22 ≈ 2.4,
eq. (3.10). The conditionL0m11 ≈ 0 is fulfilled up to negligible deviations of about 0.015 at most.

The first choice onL0m22 is motivated by the quenched investigation [27], where it was argued to
be advantageous w.r.t. the size of O(a) ambiguities encountered, while with the second choice one
is closer to the typical b-quark region itself. Satisfying these conditions onL0m22 for all (L0/a,β )

in table 1 demands to properly adjust the hopping parameter, calledκh above, that is responsible
for the mass value of the heavy valence quark flavour. This in turn amountsto prior evaluations of
the relevant correlation functions on the dynamical gauge background for some trial guesses ofκh,
in order to estimate the heavy flavour’s PCAC mass through eq. (3.3) and to tune it to the values
dictated by eqs. (3.9) and (3.10) up to a few percent.4 The resulting hopping parameters are given
in the fifth column of table 1.

3.2 Results

The technical aspects of the analysis to compute the estimators (3.6) – (3.8) from the numerical
data on the heavy-light SF correlation functions by means of the PCAC masses mi j for the various
(degenerate and non-degenerate) valence quark mass combinations are the same as in refs. [21, 27].
The correlators have been evaluated on our dynamical gauge field configurations, which were gen-
erated onL3

0×T lattices withT = 3L0/2 and massless sea quarks (thus complying with the above
requirementκl = κc resp.L0m11 ≈ 0 for the light valence quark flavour) and which were separated
by 5 – 10 HMC trajectories of length one. As for themi j themselves, they have been calculated
from the local masses, eq. (3.3), using improved derivatives (3.4) throughout and averaging over
the central timeslicesL0/(2a), . . . ,(T −L0/2)/a to increase statistics. Being secondary quantities
in particular, the statistical errors of the masses and of theRX , X = AP,m,Z, obtained from them
were estimated by theΓ–method [37], which directly analyzes autocorrelation functions.

4Similar to the situation in refs. [21, 27], this is to sufficient precision equivalent to keeping fixed the corresponding
renormalized massesL0ZAm/ZP, as for the considered couplings the entering renormalization constant barely varies.
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Figure 2: Two sets of non-perturbative results forbA − bP in the considered region of bare couplings,
referring to our two choices of quark masses, together with the prediction from one-loop perturbation theory.

Figure 3: The same as in figure 2 but for the improvement coefficientbm.

Our non-perturbative results onbA −bP, bm andZ are also listed in table 1. As a consequence
of the underlying constant physics condition (2.1), the estimatesRX , X = AP,m,Z, become smooth
functions of the bare coupling,g2

0 = 6/β . This is well reflected in figures 2 – 4, where our results
are shown in comparison with the one-loop perturbative predictions [27, 38].

The overallg2
0–dependence of our results is qualitatively similar to the quenched study [21]

and even comparable on the quantitative level. WhereasRAP is compatible with a nearly vanishing
bA − bP, as predicted by leading-order perturbation theory, for “choice 1” ofquark masses and
appears to approach this line quite rapidly asg2

0 → 0 for “choice 2”, one observes for both choices
significant deviations of the sets of estimates forbm andZ from the leading perturbative behaviour

10
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Figure 4: The same as in figure 2 but for the renormalization constantZ.

Figure 5: Left: Difference of the two sets of results in table 1 on the renormalization constantZ versus
(a/L0)

2. Right: The same for the improvement coefficientbm where, however, the ambiguity inherent in any
improvement condition imposed is of O(a). The open black triangles display the corresponding quenched
results from [21] for comparison.

in the weak coupling region considered. Since one expects the perturbative curves eventually to be
approached in the limitg2

0 → 0 also in case ofbm andZ, the curvature seen in our numbers hints
at a more complicated structure of (unknown) higher-order terms. Hence, we have to conclude
that if an improvement condition were used in a region of stronger couplings, which would no
doubt lead to a rather different set of data points, simple one-loop perturbation theory would not
be an adequate guide for the continuation ofbm andZ to weak couplings. On the contrary, this
would induce a source of uncertainty in results deriving from them that is difficult to control and,
therefore, highlights the importance of employing improvement conditions in theβ–range relevant
to the actual application.

Of course, any other estimateRX (i.e. stemming from a different choice of renormaliza-
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tion/improvement condition) may yield a different functional dependence upon g2
0, but its differ-

ences are again smooth functions that vanish in the continuum limit with a rate proportional toa/L0

(for improvement coefficients) or(a/L0)
2 (for renormalization constants). These intrinsic O(an)

ambiguities (n= 1,2) imply that rather than a numerical value at some givenβ , the important infor-
mation lies in the correctg2

0–dependenceof the estimatorsRX , X = AP,m,Z, obtained atconstant
physics. To demonstrate this, we also investigated a few alternative improvement conditions, which
are either provided by defining the estimatorsRX with standard instead of improved derivatives or
by the two quark mass choices, eqs. (3.9) and (3.10), themselves. As an example we plot in the
left panel of figure 5 the difference∆Z(g2

0) = Z(g2
0)|choice1−Z(g2

0)|choice2versus(a/L0)
2, which

clearly exhibits a linear approach towards zero. Other cases behave similarly, e.g. the O(a) ambi-
guities for∆bm(g2

0) = bm(g2
0)|choice1−bm(g2

0)|choice2 in the right panel of figure 5 are found to be
quite small, and their magnitude rapidly decreases asa/L0 → 0.

4. Outlook

Apart from the elements sketched at the end of Section 2, which partly are already in progress,
the computation of the b-quark mass at the 1/m–order of HQET along our strategy illustrated in
figure 1 still requiresNf = 2 simulations inL2 ≈ 1fm as well as in physically large volumes of
aboutL∞ & 2fm. Particularly for the latter we plan to switch to QCD with periodic boundary
conditions and to use the technique of low-mode deflation [39] in connection with all-to-all quark
propagators [40] for the numerical evaluation of correlation functions.

As further interesting directions for future work let us mention the non-perturbative tests of the
HQET expansion in the spirit of ref. [22] and the extension of our determination of improvement
coefficients andZ–factors to the parameter range relevant for (large volume) charm physics.
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