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1. Introduction

Current simulations with 2+ 1 flavors require highly improved gauge and quark actions.
Renormalization group improved gauge actions are orderO(a2) improved and should be preferred
to theO(a) improved plaquette gauge action. In accordance with our numerical simulations we
take the Symanzik improved gauge action [1, 2]

SSymanzik
G = 6

g2

[

c0 ∑plaq
1
3 ReTr(1−Uplaquette) +c1 ∑rect

1
3 ReTr(1−Urectangle)

]

(1.1)

with

c1 = −
1
12

, c0 = 1−8c1 .

As the fermionic action, we use the clover improved action as proposed by Sheikholeslami and
Wohlert [3] which means that one has to add the so-called clover term to the standard Wilson
fermion action

Sclover
F = SWilson

F −cSW ∑
n

∑
µ,ν

ig
r
4

ψ̄n σµνFµν(n)ψn , (1.2)

whereFµν(n) is the field strength in clover form andσµν = i/2(γµγν − γνγµ). An additional im-
provement can be achieved with ultraviolet filtering or smearing the gauge linksUµ in the fermionic
Wilson actionSWilson

F : it reduces the chiral symmetry breaking of Wilson quarks among light fla-
vors. There have been proposed several smearing techniques (fora detailed discussion see [4]). We
use the stout smearing of Morningstar and Peardon [5]. It is given by asequence of transformations

Uµ →U (1)
µ →U (2)

µ · · · →U (n)
µ = Ũµ , (1.3)

with

U (n+1)
µ (x) = eiQ(n)

µ (U,ωµν )U (n)
µ (x) .

The functionQ(n)
µ (U,ωµν) depends on the staples of the gauge link under consideration and on the

stout parametersωµν which determine the strength of smearing. We chose an isotropic parameter
ωµν = ω and one step smearing which is recommended by various investigations.

It is of importance to determine the improvement factorcSW appearing in (1.2) as precisely
as possible. Non-perturbative determinations are to be preferred but for the combination described
above there are no results obtained so far. In perturbation theorycSW has the form

cSW = 1+g2c(1)
SW+O(g4) . (1.4)

There have been published results forc(1)
SW for plaquette action with twisted antiperiodic boundary

conditions [6] and Schrödinger functional method [7]. For some popularimproved gauge actions
Aoki and Kuramashi [8] calculated the one-loop correction using conventional perturbation theory.
All results are obtained for unsmeared gauge links in the on-shell regime.

In this paper we calculatec(1)
SW for Symanzik improved gauge action with stout smearing in

conventional perturbation theory. We do the calculation off-shell. This enables us to determine
the one-loop contribution to the non gauge-invariant improvement coefficient cNGI for the quark
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fieldsψ as proposed in [9]. Using BRST symmetry arguments the authors proposedthe off-shell
improvement for the quark fieldsψ⋆ to be

ψ⋆ = (1+acD 6
→
D+aig cNGI 6A)ψ , (1.5)

where the coefficientcNGI does not contribute on-shell. Its perturbative expansion is known to
be [9]

cNGI = g2c(1)
NGI +O(g4) . (1.6)

In order to determinec(1)
NGI either a two-loop calculation of the quark propagator or a one-loop

calculation of the quark-quark-gluon vertex is required.. The improvement coefficientcD has been
calculated to one-loop order in [14].

2. Improvement procedure

In the approach of conventional perturbation theory we use the quark-quark-gluon vertex
Λµ(p1, p2) as discussed in [8] already. Looking at theO(a) expansion of tree-levelΛ(0)

µ (p1, p2) as
derived from action (1.2)

Λ(0)
µ (p2, p1) = −igγµ −g 1

2 ar1(p1 + p2)µ −cSWig 1
2arσµα(p2− p1)α +O(a2) , (2.1)

one can see by inserting (1.4) that a one-loop calculation forΛµ(p2, p1) provides necessary condi-

tions to determinec(1)
SW. We omit in all three-point functions the common overall color factortac.

In (2.1) p1 (p2) are the incoming (outgoing) momenta. The off-shell improvement condition states
that the non-amputated improved three-point functionG⋆,µ(p2, p1) has to be free ofO(a) terms in
one-loop. The unimproved and improved three-point functions are defined by

Gµ(p2, p1) = S(p2)Λν(p2, p1)S(p1)Dνµ(q) , (2.2)

G⋆,µ(p2, p1) = S⋆(p2)Λ⋆,ν(p2, p1)S⋆(p1)Dνµ(q) , (2.3)

with q= p2− p1. Dνµ(q) is the full gluon propagator which isO(a)-improved already.Λµ(p2, p1)

andΛ⋆,µ(p2, p1) are the unimproved and improved amputated three-point functions. The corre-
sponding quark propagators are given by

S−1(p) = i 6pΣp(p)+
ap2

2
ΣW(p) = i 6pΣp(p)

(

1−
1
2

ai 6p
ΣW(p)

Σp(p)

)

, (2.4)

S−1
⋆ (p) = i 6pΣp(p) . (2.5)

In terms of the improved quark fields (1.5)Gµ(p2, p1) can be related to its improved version

Gµ(p2, p1) = G⋆,µ(p2, p1)−aigcNGI F
[

〈
(

6A 6D−1+ 6D−1 6A
)

Aµ〉
]

. (2.6)

In deriving (2.6) we have assumed〈A〉 = 0, F denotes the Fourier transform. Taking into account
(1.6) we insert in our one-loop calculation the corresponding tree-levelexpressions

aigcNGI F
[

〈
(

6A 6D−1+ 6D−1 6A
)

Aµ〉
tree] = aig3c(1)

NGI

(

γν
1

i 6p1
+

1
i 6p2

γν

)

Dtree
νµ (q) , (2.7)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
5
0

Perturbative determination of csw with Symanzik improved gauge action and stout smearingHolger Perlt

or its amputated version

aigcNGI F
[

〈
(

6A 6D−1+ 6D−1 6A
)

Aµ〉
tree
amp

]

= −ag3c(1)
NGI

(

6p2γµ + γµ 6p1

)

. (2.8)

If we amputate (2.2) and use (2.4), (2.6) and (2.8) we get the off-shell improvement condition

Λµ(p2, p1) = Λ⋆,µ(p2, p1)+ag3c(1)
NGI(6p2γµ + γµ 6p1)

−
1
2

ai 6p2
ΣW(p2)

Σp(p2)
Λ⋆,µ(p2, p1)−

1
2

aiΛ⋆,µ(p2, p1) 6p1
ΣW(p1)

Σp(p1)
, (2.9)

which should hold to orderO(g3) by determiningc(1)
NGI andc(1)

SW correctly.

3. Calculation

(a) (b) (c)

(d)

p1

q=p  −p
2 1

p2

(e)

Figure 1: One-loop diagrams contributing to the amputated quark-quark-gluon vertex

The diagrams contributing to the amputated one-loop three-point function areshown in Fig. 1.
The calculation is performed combining symbolic and numerical methods. For thesymbolic com-
putation we use aMathematicapackage that we developed for one-loop calculations in lattice
perturbation theory (for a more detailed description see [11]). It is based on the infinite volume
algorithm of Kawai et al. [10]. The analytic treatment has several advantages: one can extract the
infrared singularities exactly and the results are given as functions of lattice integrals which can
be determined with high precision. The disadvantage consists in very large expressions especially
for the problem under consideration. In the analytic method the divergencies are isolated by dif-
ferentiation with respect to external momenta. As can be seen in Fig. 1 diagrams (b) and (c) have
two gluon propagators. So no parametrization can be chosen with only internal momentum flowing
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through the gluon lines. Therefore at least one gluon propagator has tobe differentiated. Look-
ing at the full analytic form of the gluon propagator for improved gauge actions [13] one easily
sees that huge analytic expression would arise. As discussed in [13] one can split the full gluon
propagatorDimproved

µν (k)
Dimproved

µν (k) = Dplaquette
µν (k)+∆Dµν(k) . (3.1)

The diagrams withDplaquette
µν (k) only contain the logarithmic parts and are treated with the analytic

Mathematicapackage. The diagrams with at least one∆Dµν(k) are infrared finite and can be de-
termined safely with pure numeric methods. We have written a C program with a Gauss-Legendre
integration algorithm in four dimensions (for a description of the method see [11, 12]). We choose
a sequence of small external momenta(p1, p2) and perform an extrapolation to vanishing momenta
in order to extract the corresponding values. Additionally, we have writtenan independent FOR-
TRAN code which computes the one-loop contributions for each diagram including the infrared
logarithms. Results for both methods agree within accuracy.

The Feynman rules for non-smeared Symanzik gauge action have been summarized in [8]. For
the stout smeared gauge links in the clover action the rules are given for theforward case by [4]. The
corresponding Feynman rules needed for the quark-quark-gluon vertex are much more complicated
and have been derived by the authors. They are too long as to be givenin this proceedings [15].

The calculation has been done in Feynman gauge with Wilson parameterr = 1. All the one-
loop coefficients are calculated atcSW = 1 becauseg3cSW = g3 +O(g5).

4. Results

The anticipated general structure for the amputated three-point function inone-loop is

Λµ(p2, p1) = ΛMS
µ (p2, p1)+Alat ig3 γµ

+Blat
a
2

g3 (

6p2 γµ + γµ 6p1

)

+Clat
ia
2

g3 σµα qα (4.1)

ΛMS
µ (p2, p1) is the universal part of the three-point function independent of the chosen gauge action

computed in theMS-scheme

ΛMS
µ (p2, p1) = −igγµ −g

a
2

1
(

p1,µ + p2,µ
)

−cSWig
a
2

σµα qα

+ig3F1,µ(p1, p2,q)+ag3F2,µ(p1, p2,q) . (4.2)

F1,µ(p1, p2,q) and F2,µ(p1, p2,q) are complicated functions involving polylogarithms and loga-
rithms. They will be given in [15]. The quantititesAlat , Blat andClat are obtained as

Alat = CF
(

0.03783−0.93653ω +3.42833ω2 +0.01266 log(aµ)
)

+Nc (−0.02200+0.01266 log(aµ)) ,

Blat = CF
(

0.03804−1.03749ω +3.43791ω2 +0.02533 log(aµ)
)

+Nc (−0.02432+0.01925ω +0.01266 log(aµ)) , (4.3)

Clat = CF
(

0.11618+0.82813ω −2.45508ω2)

+Nc
(

0.01215+0.01109ω −0.30228ω2) ,

5
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with CF = (N2
c −1)/(2Nc) for SU(Nc). As shown in (2.9) we need the self energy partsΣp(p) and

ΣW(p) as defined in (2.4) to solve the off-shell improvement condition

Σp(p) = 1−
g2CF

16π2

[

log(ap)2 +Σ1
]

,

ΣW(p) = 1−
g2CF

16π2

[

2 log(ap)2 +Σ2
]

. (4.4)

It turns out that the self energy partsΣ1 andΣ2 contribute only toc(1)
NGI. For the Symanzik gauge

action we will present them in [15]. For the plaquette action we get

Σplaq
1 = 8.20627−196.44600ω +739.68364ω2 ,

Σplaq
2 = 7.35794−208.58321ω +711.56526ω2 . (4.5)

We use (4.2) and (4.4) to construct the left hand side of (2.9) whereas (4.4) with (4.5) are inserted
into the right hand side. In order to fulfill (2.9) we get the following improvement coefficients for
the plaquette action

c(1,plaq)
NGI = Nc (0.00143−0.01166ω) , (4.6)

c(1,plaq)
SW = CF

(

0.16764+1.07915ω −3.68668ω2)

+Nc
(

0.01502+0.00962ω −0.28479ω2) . (4.7)

For the Symanzik improved gauge action we find the improvement coefficientc(1)
SW

c(1)
SW = CF

(

0.11618+0.82813ω −2.45508ω2)

+Nc
(

0.01215+0.01109ω −0.30228ω2) . (4.8)

5. Mean field improvement

It is known that lattice artefacts make the perturbative expansion worse. One possible im-
provement procedure is to replace the naive coupling constantg by its mean field improved value
gMF = g/u2

0 whereu4
0 is the average plaquette value for the corresponding gauge field action. By

scaling all gauge links in the clover field strengthFµν(n) in (1.2) by 1/u0 one obtains the mean
field improvedcSW as

cMF
SW = u3

0cSW. (5.1)

The perturbative expansion ofu0 is known to be

u0 = 1−
g2

MFCF

16π2 ku , (5.2)

whereku for popular gauge actions are given in [13]. Therefore, the perturbative expression for the
mean field improvedcSW is given by

cSW = cMF
SW u−3

0 =
1

u3
0

(

1+g2
MF

(

c(1)
SW−

3CF

16π2 ku

)

+O(g4
MF)

)

= cMF,p
SW +O(g4

MF) . (5.3)
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For the future simulations of the QCDSF collaboration we have the following numbers for the
Symanzik action and 2+1 flavors

CF = 4/3, Nc = 3, u4
0 = 0.6065, g2

MF = 1.71335, ku = 0.732524π2 .

This gives the one-loop expression forcSW parameter as

cSW = 1+g2(0.19136+1.13745ω −4.18029ω2)+O(g4) , (5.4)

cMF,p
SW =

1

u3
0

(

1+g2
MF (0.19136+1.13745ω −4.18029ω2)−g2

MF 0.18313
)

= 1.47557+2.83568ω −10.42148ω2 (5.5)

For no stout-smearing (ω = 0) the result (5.4) has to be compared with the number given in [8]:
c(1,AK)

SW = 0.19624449(1). The minor difference to our valuec(1)
SW = 0.19136 can possibly be related

to an inaccuracy in our numerical integrations. In the simluation the stout parameterω is chosen
to beω = 0.1 leading to a mean field improved valuecMF,p

SW = 1.65492.

This investigation has been supported by the DFG under contract FOR 465(Forschergruppe
Gitter-Hadronen-Phänomenologie).
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