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A technically simple implementation of Schrödinger functional (SF) boundary conditions for

Domain-wall and overlap quarks can be obtained by using a Wilson kernel with chirally rotated

SF boundary conditions in the Neuberger relation. The boundary conditions of the Wilson kernel

are inherited by the overlap operator and with an even numberof quark flavours the theory thus

obtained can be interpreted as a chirally rotated version ofthe standard SF. I shortly discuss the

orbifold construction and identify the (exact) flavour and parity symmetries, which are partly

realised à la Ginsparg-Wilson.
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1. Introduction

The Schrödinger functional [1, 2] has become a universal tool to tackle renormalisation prob-
lems in lattice QCD. It allows for the definition of finite volume renormalisation schemes (SF
schemes) which, in combination with recursive finite size techniques, completely solve the prob-
lem of large scale differences [3]. In principle, the Schödinger functional can be formulated with
any regularisation. On the lattice, however, it may not always be obvious how to proceed, as the
required Dirichlet boundary conditions for the fermionic fields cannot always be obtained by ex-
plicitly imposing them on the fields. Rather, the boundary conditions arise dynamically, depending
on the lattice action and its structure close to the boundaries. To make sure that the desired bound-
ary conditions are indeed obtained in the continuum limit, one may have to tune some parameters,
depending on the symmetries of the regularisation.

Of particular interest are fermion actions with exact chiral symmetry. A nice solution for
overlap quarks has been offered by Lüscher, which relies on universality arguments [4]. Previous
work [5, 6] made use of an orbifold construction, which however remains technically involved, and
does not directly lead to a real fermion determinant in the single flavour case. An even number of
quark flavours may remove this defect, at the expense of an exact flavour symmetry. The lack of
continuum symmetries may induce undesired counterterms, which have been proven to be absent
at the tree-level only. Nevertheless, this formulation hasbeen implemented for domain wall quarks
in the quenched approximation and first results have been presented at this conference [7].

Here I would like to propose a solution for even numbers of quark flavours which does enjoy
exact flavour and parity symmetries, and yet is simple to implement for both overlap and Domain-
wall quarks. For technical reasons, a slight detour is takenby implementing the Schrödinger
functional in a chirally rotated basis, which, in the continuum limit, is equivalent to the standard
Schrödinger functional. This writeup is organised as follows. I first discuss the chirally rotated SF
in the continuum, which is then regularised on the lattice through an orbifold reflection applied to
overlap quarks. I then discuss how the symmetries are realised and comment on its application to
Domain-Wall quarks.

2. The chirally rotated SF

The basic objects of interest are correlation functions obtained from the Schrödinger functional
in the chiral limit. Assuming that the flavour doubletsχ ′ andχ̄ ′ satisfy standard homogeneous SF
boundary conditions [2], the chiral rotation

χ ′ = exp(iαγ5τ3/2)χ , χ̄ ′ = χ̄ exp(iαγ5τ3/2), (2.1)

implies that the rotated fields satisfy

P+(α)χ(x) |x0=0 = 0, P−(α)χ(x) |x0=T= 0,

χ̄(x)γ0P−(α) |x0=0 = 0, χ(x)γ0P+(α) |x0=T= 0, (2.2)

with the projectors,

P±(α) = 1
2[1± γ0exp(iαγ5τ3)]. (2.3)
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Performing a change of variables in the functional integral, one then obtains the formal identities

〈O[χ , χ̄ ]〉(P±) = 〈O[exp(iαγ5τ3/2)χ , χ̄ exp(iαγ5τ3/2)]〉(P±(α)), (2.4)

where the quark masses have been set to zero. The subscripts for the correlation functions indicate
the boundary conditions forχ atx0 = 0, and the quark and anti-quark boundary fields [11] may be
included inO[χ , χ̄], by replacing

ζ (x) → P−χ(0,x), ζ̄ (x) → χ̄(0,x)P+, (2.5)

and similarly for the fields atx0 = T. As the chiral rotation is part of the non-singlet chiral sym-
metries of QCD, both formulations are thus equivalent in thecontinuum limit. At least for even
numbers of flavours, the regularisation of the SF may therefore proceed at any value of the angle
α . In particular, I will chooseα = π/2 where the projectors read

P±(π/2) ≡ Q± =
1
2
(1± iγ0γ5τ3). (2.6)

Furthermore, in the absence of mass terms, the distinction between flavour and chiral symmetries
becomes a convention. I will stick to the convention that thestandard SF boundary conditions in
terms of the projectorsP± are invariant under flavour and parity symmetries. This means that these
symmetries take a somewhat unusual form when expressed for the rotated fields (s. below).

3. Orbifold construction

The basic procedure is completely analogous to the case of Wilson quarks described in [8],
except for a small offset of O(a) introduced for technical reasons to become clear shortly.The
starting point is the standard lattice action for a single massless overlap quark,

Sf [ψ , ψ̄ ,U ] = a4∑
x

ψ̄(x)DNψ(x), aDN = 1−A(A†A)−1/2, A = 1−aDW, (3.1)

whereDW is the standard massless Wilson-Dirac operator, and the fermion fields are anti-periodic
with period 2(T +a) (rather than 2T),

ψ(x0 +2(T +a),x) = −ψ(x), ψ̄(x0 +2(T +a),x) = −ψ̄(x). (3.2)

The orbifold reflection is defined by

R : ψ(x) → iγ0γ5ψ(−a−x0,x), ψ̄(x) → ψ̄(−a−x0,x)iγ0γ5. (3.3)

The gauge field is extended to the interval[−T −a,T +a],

Uk(−a−x0,x) = Uk(x0,x), U0(−2a−x0,x)† = U0(x), (3.4)

and then 2(T + a)-periodically continued. The fermionic fields are then decomposed into even
and odd with respect toR as in [8] and, due to[DN,R] = 0, the functional integral factorises.
Interpreting even and odd fields as flavour components of a doublet χ we see that the rotated SF
boundary conditions are indeed obtained, albeit only up to O(a) effects, which are due to the O(a)
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offset in the orbifold reflection. Note that the dynamical field variables are nowχ(x) andχ̄(x) for
all Euclidean times 0≤ x0 ≤ T.

What has been achieved by the O(a) offset is that the overlap operatorDN acting on the doublet
χ(x) is block diagonal in Euclidean time. The desired explicit reduction to the time-interval[0,T]

is then simply obtained by considering only one of the blocks. Furthermore, the same holds true
in the case of the Wilson-Dirac operator itself, and the Neuberger operator can therefore still be
obtained by inserting the corresponding Wilson-Dirac kernel in the Neuberger relation, viz.

aDN = 1−A (A †
A )−1/2, A = 1−aDW, (3.5)

with the Wilson-Dirac kernelDW,

aDWχ(x) = −U(x,0)P−χ(x+a0̂)+ (Kψ)(x)−U(x−a0̂)†P+χ(x−a0̂). (3.6)

Here, I have setχ(x) = 0 for x0 < 0 andx0 > T, and the time diagonal kernelK is given by

K = 1+
1
2

3

∑
k=1

{

a(∇k + ∇∗
k)γk−a2∇∗

k∇k

}

+ δx0,0iγ5τ3P− + δx0,T iγ5τ3P+. (3.7)

4. Symmetries

As stated earlier, I refer to the standard SF boundary conditions as being flavour and parity
invariant. Then it is not difficult to see that the SU(2) lattice flavour symmetry in the rotated basis
is realised à la Ginsparg-Wilson [9, 10]:

γ5τ1,2
DN +DNγ5τ1,2 = aDNγ5τ1,2

DN, (4.1)

τ3
DN −DNτ3 = 0. (4.2)

DefiningΓ5 = γ5(1−aDN)] (note thatΓ2
5 6= 1), the generators are easily identified,

T̂1 = Γ5τ2/2, T̂2 = −Γ5τ1/2, T̂3 = τ3/2, (4.3)

and the flavour algebra does indeed close,

[T̂a, T̂b] = iεabcT̂c. (4.4)

On the other hand, all chiral symmetries are explicitly broken by the SF boundary conditions. In
the rotated framework one finds

[τ1,2,DN] 6= 0, {γ5τ3,DN} 6= aDNγ5τ3
DN. (4.5)

Note that the last equation also implies that the standard Ginsparg-Wilson relation does not hold.
However, the violations are expected to be exponentially small in the distance from the boundaries,
and I have numerically checked that this is indeed the case attree level.

Parity and time reversal are again realised in the Ginsparg-Wilson fashion, e.g.

P : χ(x) → iγ0γ5τ3χ(x̃), x̃ = (x0,−x), DNP+PDN = aDNPDN, (4.6)
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so that the symmetries of the two-flavour SF match exactly those of the standard SF with two
flavours of Wilson quarks. In contrast to the analogous construction with Wilson quarks, the re-
covery of SU(2) flavour and parity as Ginsparg-Wilson-like symmetries means that there are no
additional counterterms to be expected. One thus expects that renormalisation and O(a) improve-
ment works out with the same number of counterterms as neededin the standard case. In particular,
O(a) improvement of most (massless) correlation functions will require an analogue of the coun-
terterm proportional to ˜ct [11]. This counterterm will already contribute at the tree level, which is
a consequence of having chosen to off-set the orbifold reflection by O(a).

5. Concluding Remarks

Chirally rotated SF boundary conditions have been successfully implemented for a doublet of
quarks, and the generalisation to any even number of quark flavours seems straightforward. I have
shown that the usual SF symmetries are exactly realised withoverlap quarks. As in infinite vol-
ume, the overlap operator can be obtained by Neuberger’s construction [12], with a corresponding
Wilson kernel. The construction can therefore easily be translated to Domain-wall quarks [13, 14],
where it is sufficient to use the same Wilson kernel in the 4-dimensional slices. Note also that
Pauli-Villars fields do not pose a problem here, as a the addition of a standard mass term is compat-
ible with the orbifold construction. However, Domain-wallquarks will induce exponentially small
violations of flavour symmetry (as defined here), due to the finite extent of the lattice in the extra
dimension. Note that the determinant of the overlap Dirac operator is real and non-negative. In
fact, both flavour components of the overlap operator have real and equal determinant, so that the
SF for a single flavour could be defined in the same way. However, this cannot easily be related to
the corresponding standard single-flavour SF, as this relation now involves a singlet axial rotation,
the Jacobian of which is expected to be non-trivial. Nevertheless, such an alternative definition of
the SF could be interesting in its own right. Incidentally, it corresponds to the boundary conditions
singled out by Symanzik in his celebrated paper on the Schrödinger representation in Quantum
Field Theory [15].
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