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1. Introduction

It is well known that in lattice gauge theory the vertices arequite complicated especially for
the pure gluon sector. This is because, on the lattice, we arepreserving gauge invariance at finite
cutoff and the lattice itself breaks the Lorentz symmetry explicitly. This is the main difficulty of
lattice perturbation theory. To reduce the risk of errors and to alleviate the tedious task of deriving
the vertices, it is desirable to have an automatic method. A first attempt was made by Lüscher
and Weisz about twenty yeas ago [1]. They worked in momentum space and performed some
calculations by using their algorithm which was restrictedto closed loops sufficient for pure gauge
theory.

Recently a new algorithm, that we call bottom up algorithm, was proposed by Hart et. al.[2].
A crucial point in this generalization is that it can deal with any parallel transporter, not only
with closed loops. This allows to also include a fermion action or even a smeared HQET action.
A relevant assumption for this algorithm has been translation invariance. Our main concern in
this note is to extend the bottom up algorithm to the Schrödinger functional (SF)[3] where this
invariance is broken for the time direction. Before going tothe extension we first summarize the
position space version of the algorithm on the usual translation invariant lattice in the next section.

2. Bottom up Algorithm

In Ref.[2], the authors explain the algorithm in momentum space but here we will move to
coordinate space. In the following we denote the antihermitean gauge fluctuation field byqµ(x),
and the link variable (still without background field) byU(x,µ) = exp(g0qµ(x)).

A first important point for the automatic operation is how to represent the vertices in a program.
We consider the parallel transporter along a curveL on the lattice. Ther ’th order coefficient in
the Taylor expansionPr of the parallel transporterP[L ;q] is written as

P[L ;q] =
∞

∑
r=0

gr
0

r!
Pr [L ;q], Pr = ∑

a1,...,ar

Ca1···ar

Nr

∑
k=1

q
α1

k
a1 · · ·q

α r
k

ar fk, (2.1)

whereα = (µ ,x) is a combined index labelling links, anda is color. We callCa1···ar = Ta1 · · ·Tar a
color factor, andfk an amplitude. The latter corresponds to a value of a reduced vertex with index
(α1

k , · · · ,α r
k). The reduced vertex here means a vertex without the color factor. The information

about the reduced vertex of orderr is now encoded in a list consisting ofNr lines

L(r)
k = (α1

k , · · · ,α r
k; fk), (2.2)

which holds the index structures and amplitudes of the corresponding reduced vertex. The list
L(r) = {L(r)

k |k = 1, ..,Nr} corresponds to the all nonzero elements of the reduced vertex of order
r. It will be constructed recursively by the multiplication algorithm to be given below. Note that
in eq.(2.1) the color factor is located outside of thek-summation, because it is independent of the
shape of the transporter. However, for the SF this nice structure is rendered more complicated by
the background field as we will see in the next section.
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As an explicit example for a list, let us look at the case of thesingle gauge link variable. From
the expanded form we can obtain a listL(r) of the link variable,

U(x,µ) =
∞

∑
r=0

gr
0

r! ∑
a1···ar

Ca1···ar q
α
a1
· · ·qα

ar
, L(r) = ( α , · · · ,α

︸ ︷︷ ︸

r elements

;1), α = (µ ,x). (2.3)

It consists of only one line (Nr = 1) and is the elementary building block of the algorithm, that is,
something like an initial condition.

So far we have defined the fundamental elements on which the algorithm operates. Next we
consider the case that a parallel transporterP is composed fromP′ andP′′, P = P′P′′ and want to
obtain the vertices ofP from those ofP′ andP′′. In other words, the problem is how to obtain a set
of lists of P (up to a certain order), from those ofP′ andP′′, {Li}P′×{L j}P′′ −→ {Lk}P. Since any
parallel transporter is composed of elementary one-link variables, by repeating the procedure, we
can obtain the lists for arbitrary parallel transporters. This is the origin of the name ‘bottom up’.
The algorithm can be easily understood by looking at an actual multiplication of the coefficients of
the Taylor expansion. The coefficient ofP with orderr, Pr , is expressed by those ofP′ andP′′ as

Pr =
r

∑
s=0

r!
s!(r−s)!

P′sP
′′
r−s

= ∑
a1...ar

Ca1...ar

r

∑
s=0

r!
s!(r−s)!

N′s

∑
i=1

N′′r−s

∑
j=1

qα1
i

a1 ...q
αs

i
as q

α1
j

as+1...q
α r−s

j
ar f ′i f ′′j

= ∑
a1...ar

Ca1...ar

Nr

∑
k=1

q
α1

k
a1 · · ·q

α r
k

ar fk.

After the second equal-sign we inserted the explicit form ofthe coefficients, and use the fact that
the color factor is independent of the shape of the parallel transporter. In the last step we combine
the three summations into that overk. More precisely, we did a relabelling of the indices, and
rewrote the amplitude factor. Finally the resulting list ofP, Lk is created by putting the new label
structure and the new amplitude. The algorithm is summarized as

• Relabeling:{α1
i , · · · ,αs

i ,α1
j , · · · ,α

r−s
j } −→ {α1

k , · · · ,αs
k,α

s+1
k , · · · ,α r

k}

• Amplitude part: r !
s!(r−s)! f ′i f ′′j −→ fk

• Creating list:L′i×L′′j −→ Lk = (α1
k , · · · ,α r

k; fk)

This procedure should be carried out for 0≤ s≤ r, 1≤ i ≤N′s and 1≤ j ≤N′′r−s if order r is desired.
The algorithm has been implemented in the python script language, which is good at dealing with
the complicated list operation. In this way, one can obtain the vertices for any parallel transporter.

3. Extension to the Schrödinger Functional

The essential new ingredient in the SF is the presence of the non-vanishing back ground field.
It is induced by non trivial Dirichlet boundary conditions in the time direction. In this case, the link
variable is expressed by the background field and the fluctuation fieldqµ ,

U(x,µ) = V(x,µ)eg0qµ (x). (3.1)
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The main difficulty due to the presence of the back ground fieldoccurs in the color factor. In the
color factor, the back ground field can appear “randomly” between SU(3) generators, for example

Ca1a2a3··· = Ta1Ta2Ta3 · · · −→ Ta1VTa2V
−1Ta3 · · · , on SF, (3.2)

where arguments ofV ’s and powers (V or V−1) depend on the location of the links and its orien-
tation. At first glance, it seems difficult to deal with it in a systematic way. Furthermore, since the
background field depends on the Lorentz and position indices, the color factor is located inside of
the sum overi and does not factorize anymore,

Pr = ∑
a1,...,ar

Ca1···ar

Nr

∑
k=1

q
α1

k
a1 · · ·q

α r
k

ar fk −→ ∑
a1,...,ar

Nr

∑
k=1

C
k
a1···ar

q
α1

k
a1 · · ·q

α r
k

ar fk, on SF. (3.3)

One can solve the problem however for the restricted class ofbackground fields that have
mainly been used in applications of the SF [3],V(x,0) = 1, V(x,k) = V(x0). In addition, we take
the background field to be abelian, given by diagonal color matrices. This means that the generators
in theV(x0) are written as linear combinations of the elements of the Cartan sub-algebraH j , that
is,V(x0) = ei ∑ j hj (x0)H j with coefficientsh j(x0). Now we find the nice equation,V(x0)IaV−1(x0) =

Iaeiφa(x0), and theIa (Cartan basis) do not mix with other basis elements. This is because, in the
adjoint representation, an element of the Cartan basis is aneigenstate of the Cartan generator,
[H j , Ia] = µ jaIa. The eigenvalueµ is a root, and the phase is a linear combination of the roots and
h j(x0), φa(x0) = ∑ j µ jah j(x0). Another property of the standard background fields that is relevant
here is that the back ground field and the phase has a simple dependence on time,V(x0 + ∆t) =

V(x0)exp(i∆tE ), φa(x0 + ∆t) = φa(x0)+ ∆tψa, whereE is the color electric field. This however
needs to be relaxed later, see in next section.

Our main finding is that by making use of the above properties of the background field any
color factor of orderr can be written as

C
k
a1···ar

(x0) =
[

Ia1 · · · IarV
Ak(x0)e

iE Bk

]

︸ ︷︷ ︸

3×3 matrix

e
i
2 ∑r

u=1(ψauC(u)
k +φau(x0)D

(u)
k )

︸ ︷︷ ︸

U(1) phase factor

, (3.4)

where the background field has been moved to the right in the 3× 3 matrix part. Actually we
can show by induction thatA andB are single component integer, andC andD arer component
integer valued vectors. In the expression, the informationof the lattice size and the back ground
field are encoded inV, E , φ andψ . The lists are independent of these values, onlyx0,A,B,C,D
are required. The former are only needed when implementing the vertex in a diagram calculation
program at a second stage. Note that we needx0, since there is no translation symmetry for the
time direction. We choosex0 as the time component of the position of the left most link variable in
the parallel transporter. The benefit of the expression is that we can separate the information about
the list (A,B,C,D) and the lattice size and the back ground field. Therefore, wecan do a symbolic
list operation, independently of the details of the latticeand the background field.

We have obtained a manageable expression for the color factor. Next we formulate the multi-
plication for this structure of integer lists(x0,A,B,C,D). From an actual multiplication of the color
factors, we found the algorithm to get a list of color factorC (orderr) from those ofC ′ (orders)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
5
7

Automatic generation of vertices for the Schrödinger functional Shinji Takeda

andC ′′ (orderr−s), (x0,A,B,C,D)←− (x′0,A
′,B′,C′,D′)× (x′′0,A

′′,B′′,C′′,D′′),

x0 ←− x′0, (3.5)

A ←− A′+A′′, (3.6)

B ←− B′+B′′+ ∆tA′′, (3.7)

C ←− (C′(1), · · · ,C
′
(s)

︸ ︷︷ ︸

s elements

,C′′(1) +2B′+ ∆tD′′(1), · · · ,C
′′
(r−s) +2B′+ ∆tD′′(r−s)

︸ ︷︷ ︸

r−s elements
︸ ︷︷ ︸

r elements

), (3.8)

D ←− (D′(1), · · · ,D
′
(s)

︸ ︷︷ ︸

s elements

,D′′(1) +2A′, · · · ,D′′(r−s) +2A′
︸ ︷︷ ︸

r−s elements
︸ ︷︷ ︸

r elements

), (3.9)

where∆t = x′′0−x′0. It turns out that the resultingA andB remain single component integer. On the
other hand, the resultingC andD are given by combinations of single prime and double prime ob-
jects with some additional terms. SinceA,B,C,D are all integer value and this operation is simple,
the algorithm is suited for a symbolic operation and easily implemented in python script language.
As a new ingredient in the implementation, we have to add the new componentsx0,A,B,C,D to the
earlier list structure,

L(r)
k = (α1

k , · · · ,α r
k,x0,Ak,Bk,Ck,Dk; fk). (3.10)

Even in the SF with non-trivial color factor, the algorithm maintains a closed multiplication struc-
ture, therefore it is applicable for any parallel transporter.

To confirm and check the algorithm, we perform a one-loop calculation of the SF coupling.
By calculating this quantity, we can check the two-point vertex, that is, inverse propagator. We
investigate not only the plaquette gauge action consideredbefore [3], but also the improved gauge
actions including the rectangular loop [4] and get consistent results. Furthermore, we compared
with the hand derived three point vertex of the plaquette gauge action, available from a private note
of Peter Weisz and confirmed consistency. To get further confidence in the implementation of our
algorithm, we have to check the four-point vertex. To do so weneed to do a two-loop calculation
of the SF coupling [5, 6], and this will be reported in the future.

4. Application I: L = T±a lattice

As a simple novel application of our algorithm, we perform a one-loop computation of the SF
coupling on lattices withL = T + sawith s= ±1. Such lattices are motivated by considering the
SF with staggered fermions. Due to the Dirichlet boundary inthe time direction, we have to set
T to be odd. Here, we will discuss only the gauge part on the lattice, not the staggered fermion
part. More details about the latter are given in the contribution of P. Perez Rubio and S. Sint to this
conference.

When one takes the continuum limit in the standard SF, one sets theT/L = 1. The fact that we
here have to set(T + sa)/L = 1 when taking the continuum limit in the tree-levelO(a) improved
theory causes some change to the solution of the equation of motion, that is, the background field. It
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Figure 1: One-loop relative deviation as a function ofa/L. The left(right) panel shows tree(one-loop) level
O(a) improved results

is modified by lattice artifacts as compared to the standard one, and has to be extracted numerically
from the equation of motion. The time dependence of the background field turns out not to be
strictly linear anymore. Therefore we have to extend our algorithm to apply for an arbitrary time
dependent phaseφ(x0). For this purpose, we have derived another variant algorithm for the color
factor which is similar to eq.(3.9), and it will be shown in more detail in a future publication.

In Figure 1, we show the resulting relative deviation of the step scaling function to one-loop
order,δ (k)

1 (a/L), given by

δ (u,a/L) =
Σ(u,a/L)−σ(u)

σ(u)
= δ (k)

1 (a/L)u+O(u2), (4.1)

σ(u) = ḡ2(2L), u = ḡ2(L), (4.2)

wherek = 0(k = 1) is the tree (one-loop)level O(a) improved case. In the plots, for comparison,
we also include those ofs= 0 whereL andT are the same. As a result, we observe that all three
cases have similar absolute size of the lattice artifacts.

5. Application II: Λ parameter for improved gauge actions

As a next application, we apply the algorithm to the improvedgauge actions including six
link loops (not only for the rectangular type but also for thechair and 3-dimensional type actions).
The loops are shown in Figure 2 with weight factors,c0, c1 etc. and the weights are normalized
by c0 + 8c1 + 16c2 + 8c3 = 1. We perform the one-loop computation of the SF coupling forthe
improved gauge actions and extract information about a ratio of lambda parameters for the pure
SU(3) gauge theory between the lattice scheme (the various gauge actions) and the SF scheme,
ΛLat/ΛSF. By combining the result ofΛSF/ΛMS in [6] for N = 3 andNf = 0, we summarize the
values ofΛLat/ΛMS = ΛLat/ΛSF ·ΛSF/ΛMS in Table 1. We observe rough consistency with old
results.

We thank the Deutsche Forschungsgemeinschaft (DFG) for support in the framework of SFB
Transregio 9.
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c0 c1 c2 c3

Figure 2: Loops with weight factorsc0,1,2,3 which contribute to the improved gauge action.

Action c1 c2 c3 ΛLat/ΛMS

Plaquette 0 0 0 0.0347109675... [7]

Wilson RG −0.252 0 −0.170 2.34086(2)

Iwasaki −0.331 0 0 2.12455(5)

DBW2 −1.40686 0 0 44.21(2)

Symanzik −1/12 0 0 0.1836938(4)

Symanzik II −1/12 1/16 −1/16 0.1782883(4)

no name −1/12 −0.1 0.1 0.1673674(8)

Table 1: We show our results ofΛLat/ΛMS in SU(3) gauge theory for various gauge actions, except for the
plaquette gauge action ref. [7] which is given here for completeness. Our values are roughly consistent with
old results [8, 9, 10, 11, 12, 13], but in ref.[13] the authorsdo not show error estimates therefore, it is hard
to compare. After the completion of this work, new results for several gauge actions have appeared in ref.
[14].

References

[1] M. Lüscher and P. Weisz, Nucl. Phys.B266(1986) 309.

[2] A. Hart, G. M. von Hippel, R. R. Horgan and L. C. Storoni, J.Comput. Phys.209(2005) 340.

[3] M. Lüscher, R. Sommer, P. Weisz and U. Wolff, Nucl. Phys.B413(1994) 481.

[4] S. Takeda, S. Aoki and K. Ide, Phys. Rev.D68 (2003) 014505.

[5] A. Bode, U. Wolff and P. Weisz, Nucl. Phys.B540(1999) 491.

[6] A. Bode, P. Weisz and U. Wolff, Nucl. Phys.B576(2000) 517.

[7] M. Lüscher and P. Weisz, Phys. Lett.B349(1995) 165.

[8] P. Weisz and R. Wohlert, Nucl. Phys.B236(1984) 397.

[9] Y. Iwasaki and S. Sakai, Nucl. Phys.B248(1984) 441.

[10] Y. Iwasaki and T. Yoshie, Phys. Lett.B143(1984) 449.

[11] A. Ukawa and S.-K. Yang, Phys. Lett.B137(1984) 201.

[12] W. Bernreuther, W. Wetzel and R. Wohlert, Phys. Lett.B142(1984) 407.

[13] S. Sakai, T. Saito and A. Nakamura, Nucl. Phys.B584(2000) 528.

[14] A. Skouroupathis and H. Panagopoulos,hep-lat/0709.3239

7


