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AdS string duals to QCD-like theories are beginning to shed new light on high energy scattering of

hadrons. Here we discuss the beginning of the unitarizationprogram for high energy scattering based on

String/Gauge duality. The eikonal expansion for the strongcoupling Pomeron is presented, which when

applied to a confining background metric respects and saturates the Froissart bound. On a technical

level, we expose the central role of SL(2,C) symmetry for thestrong coupling Pomeron kernel in the

conformal limit.
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1. Introduction

The subject of high energy scattering for hadrons has a long history, predating both QCD and string

theory. Here I wish to report on progress toward a fuller understanding of this limit. However the reader

should be warned that this short presentation will simplify a rather technicaland complex subject and

she or he is referred to references in the bibliography of recent papers [1, 2, 3, 4] for much more careful

and cautious assessment. In the context of QCD, there is a fundamental question that should have a

definite answer. QCD is apparently the correct theory of the strong nuclear force with confinement and

a mass gap. It is a self-consistent unitary theory with a well-defined S-matrix, which is UV complete for

any number of colorsN > 1 and a limited number of fundamental quark flavors. (The flavor constraint

requiresn f < 11N/2 to maintain asymptotic freedom and a more stringent upper bound onn f to avoid

the Banks-Zaks conformal IR fixed point.) Consequently, in the absenceof all other interactions, one

can in principle determine properties of QCD at arbitrarily high energies. For example, in three flavor

QCD, we may ask what is the exact asymptotic form for the high energy limit forthe total cross section

for scattering any of the stable hadrons (pion, kaon, nucleon etc). Specifically, the celebrated Froissart

theorem from 1961 gives a rigorous bound,

σTot(p+ p → X) ≤ m2
pCpp(mπ/mp)log2(s/s0) , (1.1)

when applied to the total pp cross section, as the center of mass energyE =
√

s goes to infinity. Even

in the pure glue sector (n f = 0), a similar theoretical bound must hold for glueball scattering,σTot ≤
Λ2

qcdC0 log(s/s0), whereC0 is a dimensionless constant.

Surprisingly after almost 50 years since the proof of the Froissart bound, we still are not certain that

this bound is saturated and if so how to compute the coefficientCpp(mπ/mp)! What is the dependence

of this coefficient in the chiral (mπ → 0) limit? Questions like this not only pose a sharp theoretical chal-

lenge, they have significant phenomenological consequences. At very high energies such as in cosmic

rays or even the LHC, the lack of a prediction of the QCD cross sections, makes it difficult to determine

if new physics is responsible or not for the observed increase in the cross section. More generally one

would like to know what distribution of multi-particles configurations dominate highenergy hadronic

scattering and the rate for the diffractive production of new particles such as the Higgs or new TeV spec-

tra. We are still far from a clear picture, let alone quantitative control of these phenomena. Here let

me report on the recent developments in this subject based on Maldacena’s weak/strong duality relating

Yang Mills theories to string theories in (deformed) Anti-de Sitter space.

2. Geometry of Pomeron Exchange

In the Regge theory the traditional approach to the leading high energy behavior is related to a rather

mysterious object in the complex J-plane referred to as thePomeron, whatever that is! In spite of the

difficulty in computing the properties of the Pomeron exchange process, in QCD there is in principle a

clean, albeit indirect, definition. By expanding the elastic amplitude for SU(N)QCD ,

A(s, t) = g2
0A1(s, t,λ )+g4

0A2(s, t,λ )+ · · · (2.1)
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in g0 ∼ 1/N at fixed ’tHooft couplingλ = g2
Y MN, we may adopt the definition:

Pomeron≡ leading contribution at largeN to the vacuum exchange at large s and fixed t

While this may appear to be circular, there are some definite consequences.Both weak coupling

SU(N) QCD and strong coupling dual string theory identify this leading 1/N2
c term with the topology of

a t-channel exchange flux tube corresponding to a single color trace operator in Yang Mills theory or a

closed string in the dual description.

In weak coupling perturbation theory to first order in the ’tHooft couplingλ and all of order

(λ log(s))n, the summation of QCD diagrams leads to the BFKL Pomeron kernel. This kernelis the

solution to a t-channel Bethe Salpeter equation for exchanging two "Reggeized" gluons. Also to this

order, the beta function is zero and so QCD maybe viewed as as a conformal theory. Consequently it

is relevant to compare this result with recently identified strong coupling kernel using the AdS dual to

N = 4 super conformal Yang Mills theory [2]. Indeed the strong coupling result does exhibit a remark-

able similarity to the BFKL kernel that can begin to shed light on this Pomeron kernel in the conformal

limit for general ’tHooft coupling. Let us give a geometrical interpretationof this similarity.

Consider the Regge limit for a generaln-particle scattering amplitude:A(p1, p2, · · · pn). The rapidity

gaps, ln(p+
r p−ℓ ), between any right- and left-moving particles are allO(logs), i.e., a large Lorentz boost,

exp[yM+−], with y ∼ logs, is required to switch from the frame co-moving with the left movers to the

frame co-moving with the right movers. TheJ-plane is conjugate to rapidity, and as such is identified

with the eigenvalue of the Lorentz boost generatorM+−. In the context of the AdS/CFT correspondence,

consider the boost operator relative to the fullO(4,2) conformal group. In terms of transformations

on light-cone variables, there are two interesting 6 parameter subgroups:The first is the well known

collinear groupSLL(2,R)×SLR(2,R) used in DGLAP for deep inelastic scattering, with generators,

SLL(2,R), SLR(2,R) generators: D±M+− , P± , K∓ , (2.2)

which corresponds in the dualAdS5 bulk to isometries of the MinkowskiAdS3 light-cone sub-manifold.

The second isSL(2,C) (or Möbius invariance used in solving the weak coupling BFKL equations) with

generators,

SL(2,C) generators: iD±M12 , P1± iP2 , K1∓ iK2 , (2.3)

corresponding to the isometries of the Euclidean (transverse)AdS3 subspace ofAdS5; EuclideanAdS3

is the hyperbolic spaceH3. IndeedSL(2,C) is the subgroup generated by all elements of the conformal

group that commute with the boost operator,M+− and as such plays the same role as the little group

which commutes with the energy operatorP0.

To understanding the origin of the SL(2,C) algebra, let us discuss the isometries of the Euclidean

AdS3 metric,ds2 = R2[dz2+dwdw̄]/z2, where the transverse subspace is(w = x1+ ix2,z). The generators

of theSL(2,C) isometries ofAdS3 are

J0 = w∂w +
1
2

z∂z , J− = −∂w , J+ = w2∂w +wz∂z − z2∂w̄

J̄0 = w̄∂w̄ +
1
2

z∂z , J̄− = −∂w̄ , J̄+ = w̄2∂w̄ + w̄z∂z − z2∂w . (2.4)
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The singularities in theJ-plane must be determined by the eigenvalues of the boost operator, whichfor

ourAdS Pomeron1 is approximated byM+− = 2−H+−/(2
√

λ )+O(1/λ ) to leading order in strong cou-

pling. Indeed we note that the strong coupling Pomeron kernel,K ( j,x⊥− x′⊥,z,z′) = (zz′/R4)G3( j,v),

is directly written in terms of theAdS3 Green’s function ,

G3( j,v) =
1

4π

[
1+ v+

√
v(2+ v)

](2−∆+( j))

√
v(2+ v)

, (2.5)

which is the solution to the boost equation at strong coupling,

[H+− +2
√

λ ( j−2)]G3( j,v) = z3δ (z− z′)δ 2(x⊥− x′⊥) . (2.6)

As as a consequence of SL(2,C) invarianceG3( j,v) depends only on theAdS3 chordal distance,v =

((x⊥− x′⊥)2 +(z− z′)2)/2zz′ and theAdS3 conformal dimension,∆+( j)−1,

∆+( j) = 2+

√
4+2

√
λ ( j−2) = 2+

√
2
√

λ ( j− j0) . (2.7)

The analytic continuation from DGLAP to BFKL operators has been discussed at weak coupling for

some time. The demonstration of this relationship in all large-λ conformal theories, and the derivation

of the formula (2.7), is given in section 3 of [2], where∆+( j) = 2 at j = j0 (the BFKL exponent) and

∆+( j) = 4 at j = 2 (for the energy-momentum tensor, the first DGLAP operator) was demonstrated. For

clarity, we reproduce Fig. 1 from [2] showing the essential form of this function for large and smallλ .

−1 1 2 3 4 5

0.5

1

1.5

2

2.5

3

∆

λ ≪ 1

λ ≫ 1

j

Figure 1: Schematic form of the∆− j relation forλ ≪ 1 andλ ≫ 1. The dashed lines show theλ = 0 DGLAP

branch (slope 1), BFKL branch (slope 0), and inverted DGLAP branch (slope−1). Note that the curves pass

through the points (4,2) and (0,2) where the anomalous dimension must vanish. This curve is often plotted in terms

of ∆− j instead of∆, but this obscures the inversion symmetry∆ → 4−∆.

1In Ref. [2] the eigenvalue conditionM+− = j was also identified with the on-shell condition for the world sheet dilatation:

L0 + L̄0−2 = 0. Here we are concerned with the target space isometries.
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With H+− = 3− 2J2− 2J̄2 expressed in terms ofSL(2,C) Casimirs, we are led directly to the J-

plane spectrum,j(ν) = j0−Dν2 +0(ν4), and as first pointed out in Ref. [2] the strong coupling BFKL

intercept isj0 = 2−2/
√

λ and the diffusion constant isD = 2/
√

λ .

It is interesting to note that this structure is similar to the weak coupling one-loopng gluon BFKL

spin chain operator in the large N limit. Here the boost operator is approximatedby M+− = 1−
(αN/π)HBFKL , whereHBFKL = 1

4 ∑ng

i=1[H (J2
i,i+1) + H (J̄2

i,i+1)] is a sum over two-body operator with

holomorphic and anti-holomorphic functions of the Casimir. The Yang Mills coupling is defined as

α = g2
Y M/4π. Even numbers of gluons (ng) contribute to the BFKL Pomeron with charge conjugations

C = +1 and the odd number of gluons to the so called “odderon” with charge conjugationsC = −1. The

consequence for the leading J-plane singularity in the two gluon channel isnow,

j(ν) = j0−Dν2 +0(ν4) , (2.8)

with j0 = 1+4ln2αN/π andD = 14ζ (3)αN/π.

Let us note some differences between the strong-coupling and weakbrained-coupling limits. First,j0
moves from 1 to 2 asλ moves from small to large. Also, the formulas forj(ν) given above have different

regimes of validity; at strong coupling the energy-momentum tensor atj = 2 (along with the nearbyj ∼ 2

DGLAP operators) lies within the region of validity of the strong-coupling expression, while the explicit

factor ofλ in M+− means the weak coupling BFKL result breaks down beforej = 2. In strong coupling

perhaps one should visualize the Pomeron as the exchange of single traceplanar diagram with an infinite

number of t-channel gluons whose interactions are approximated via a meanfield approximation.

3. The eikonal approximation

We now turn to the problem of the eikonal summation of multiple Regge exchange graphs for the

AdS5 strong coupling Pomeron. The standard eikonal formula takes the classic form,

A(s, t) = −2is
∫

d2be−ib⊥q⊥
[
eiχ(s,b⊥)−1

]
, (3.1)

wheret = −q2
⊥. For the Regge pole model of the Pomeron exchange,χ(s,b⊥) is the Fourier transform

to impact parameter space of the elastic amplitude in the one-Reggeon exchange approximation,

χ(s,b⊥) =
1
2s

∫
d2q⊥
(2π)2 eib⊥q⊥A(1)(s, t) , (3.2)

with A(1)(s, t) = −[(e−iπα(t) ± 1)/sinπα(t)]β (t)sα(t). This is the leading contribution to the sum of

graphs depicted in Fig. 2 below. Let us compare this with our result for the eikonalization of theAdS5

graviton of Ref. [4]

A2→2(s, t) ≃−2is
∫

d2b e−ib⊥q⊥
∫

dzdz′P13(z)P24(z
′)

[
eiχ(s,b⊥,z,z′)−1

]
(3.3)

whereb = x⊥− x′⊥ due to translational invariance. The salient new features relative to the above four-

dimensional expressions are the new transverse co-ordinate for the fifth dimension inAdS5 and the prod-

uct of wave functions for left-moving (1→ 3) and right-moving (2→ 4) states,

P13(z) = (z/R)2
√

g(z)Φ1(z)Φ3(z) and P24(z) = (z′/R)2
√

g(z′)Φ2(z
′)Φ4(z

′) (3.4)
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+++

p1

p2p4

p3

Figure 2: Ladder and crossed ladder diagrams contributing to the eikonal approximation in the high energy limit.

The obvious (and correct) guess for the eikonalization ofAdS5 Pomeron is to simply use the appropriate

AdS3 kernel given by inverse Mellin transform of the J-plane kernel presented above,

χ(s,x⊥− x′⊥,z,z′) =
g2

0R4

2(zz′)2s
K (s,x⊥− x′⊥,z,z′) , (3.5)

whereg2
0 = κ2

5/R3. This is a natural generalization of our earlier result forAdS graviton exchange [4],

whose kernel can be obtained by taking the limitλ → ∞.

3.1 Frozen String Bits in Flat Space

It is also interesting to compare our strong coupling results inAdS space with the eikonal formula

of Amati, Ciafaloni and Veneziano [6] for the superstring in flat space. The flat space solution does not

require a truncation of the infinite number of normal modes of a full string world sheet description, so

similarities with the general mechanism for eikonalization in string theory found inour strong coupling

AdS example suggest further generalization beyond strong coupling. Inflat space the superstring eikonal

phasêχ is a matrix for all 2 to 2 particle scattering amplitudes in the planar approximation. Similar to our

AdS5 eikonal amplitude, this matrix can be re-expressed geometrically, this time by a change of basis to

an infinite dimensional “impact parameter” space for the transverse positions of individual string “bits”

x⊥(σ) of the colliding strings:

T4 ∼−2is
∫

Dx⊥Dx′⊥dD−2b⊥P13[x⊥(σ)]P24[x
′
⊥(σ ′)]eib⊥q⊥[

eiχ(s,b⊥;x⊥,x′⊥)−1
]
. (3.6)

P31[x⊥(σ)] = |Φ[x⊥(σ)]|2 andP42[x′⊥(σ ′)] = |Φ[x′⊥(σ ′)]|2 are then expressed as the square of Gaussian

wavefunctionals [2],

Φ[x⊥(σ)] = 〈x⊥(σ)|0;0〉 = exp[− 1
16π2α ′

∮
dσ1

∮
dσ2

x⊥(σ1)x⊥(σ2)

sin2(σ1−σ2
2 )+ ε2

] , (3.7)

for the overlap of the string vacuum state,|0;0〉, and the string bit distribution at the time of impact

x+ = 0.
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Thus we see that the geometrical extension of the transverse dimensions that we saw above, where

the KK radial modez allowed us to rewrite a multi-channel problem in four dimensions using a transverse

AdS3, has an analogue here. For the string, the exact flat space eikonal amplitude, a multi-channel

problem involving a tower of massive string states, is diagonalized using an infinite dimensional space

which is a product of transverse impact-parameter spaces, one for each string bit. During the collision,

each string bit interacts instantaneously in light-cone timeX+ = τ undergoingzero deflection. The string

bits are frozen.

4. Future directions

While our discussion above has emphasized results for the conformal theory, the eikonal expression

still holds for confining backgrounds with the appropriate kernel. For example the hardwall model with

a cut-off atzIR = 1/Λqcd in the IR region is again anAdS3 Green function with appropriate boundary

condition atzIR. However the consequences are important. We now have a confining QCD-like dual

with a discrete spectrum. This allows one to argue that the eikonal contributionto the total cross section

respects and saturates the Froissart bound. One future goals is to showthat the linearity approximation

for the eikonal sum holds for a sufficiently large region in impact parameterspace to prove saturation

of the Froissart bound in strong coupling confining gauge theories. After this, we plan to identify the

specific non-linear contributions due to Pomeron splitting as for example in the triple Pomeron coupling.

In extreme strong coupling limit (
√

λ/ log(s) → ∞), the dual theory is the Einstein-Hilbert action in a

curved (AdS like) background. By isolating the leading contribution in the gravity limit first, we can

proceed systematically to introduce the 1/
√

λ contributions to guide the development of a dual Reggeon

effective field theory analogous to the earlier Gribov calculus. These are ambitious goals but ones that

have real promise to bring new clarity to high energy hadronic physics.
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