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1. Motivation and summary

Staggered fermions (SFs) do not entirely overcome the fermion doubling problem. The dou-
bler multiplicity is taste. Fermion doubling creates difficulties for lattice power-counting, as was
pointed out some years ago by Lüscher [1].

To better understand perturbative renormalization of SFs it is of course useful to have a lattice
power-counting theorem. Reisz’s lattice power-counting theorem [2] was a significant achievement
because on the lattice Feynman integrands are trigonometric rather than rational functions of mo-
menta; this can lead to results that differ from those of the continuum in important ways. It is often
stated that no power-counting theorem exists for SFs [3–6].

However, it is also widely believed that the theory of SFs coupled to Yang-Mills (denoted
here SF-QCD) yields the right quantum continuum limit in perturbation theory. That is to say, the
lattice perturbation series can be renormalized and matched to a continuum renormalization scheme
at every order in the gauge coupling g. This conclusion is supported by an analysis of the types
of non-irrelevant operators that are allowed by the symmetries of SF-QCD. One finds that all such
operators are already present at tree-level. (See for example [7] and refs. therein.) That is, from a
Wilsonian point of view one concludes that SF-QCD is in the same universality class as continuum
QCD. It is reasonable to believe that by an adjustment of the bare parameters of the lattice action,
one can arbitrarily adjust the coefficients of all non-irrelevant operators in the infrared, in order to
obtain the desired theory.

The belief that SF-QCD is renormalizable also follows from a consideration of powers of the
lattice spacing a that arise in vertices and propagators of the theory, and how they appear in loop
diagrams, an early example being [8]. In fact, for 1-loop diagrams, it is easy to power-count by
partitioning the loop integration domain in a sensible way and estimating the integrand and measure
for each of those domains. But this is nothing other than a limited version lattice power-counting.
So, in fact, a version of power-counting already exists, though it is not as general as we would like.

In actuality, this sort of partitioning is exactly what is done in Reisz’s proof of his lattice power-
counting theorem. However, the complexities that occur at high orders—where the number of
domains increases factorially—are best addressed by a more sophisticated mathematical approach,
just as in the continuum proofs of Weinberg [9] or Hahn and Zimmermann [10]. It is this sort
of general method of power-counting that is aimed at in the present study. The subtraction of
divergences, and renormalization, are left for future work.

2. Brief summary

(1) Domain decomposition to isolate poles. Insert a resolution of identity for each line
momentum1 `i that partitions the integration domain into ε-near and ε-far regions. The former are

1Line momenta are the linear combinations of loop momenta k and external momenta q that flow through propaga-
tors (lines) in the diagram.
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balls of radius επ/a concentric about the lattice poles, including SF doublers. ` i ∈ J correspond to
ε-near and zi ∈ Z4 locates the pole: `i = (π/a)zi. The result is that the lattice Feynman integral Î is
written as a sum:

Î = ∑
Jz

ÎJz. (2.1)

The number of terms that are nonvanishing is finite. Our job is to bound each one.

(2) Shift loop momenta such that `i ≈ 0 for ε-near line momenta. Here, ki → ki + ∆i

where ∆i ∈ (π/a)Z4, so that all `i ∈ J are near to the trivial poles `i = 0. Thereby, denominators
can be bounded by continuum expressions.

(3) Eliminate explicit π/a using trig. identities. Due to lack of π/a-periodicity, the k-
shifted numerator V (k+∆,q;m,a) of the Feynman integrand may contain explicit π/a. Application
of trig. identities leads to a new function: VA(k,q;m,a) ≡V (k +∆,q;m,a).

We are now in a position to follow Reisz in every remaining step.

(4) Apply Reisz’s rational bounding methods. Dropping the subscript A, we write the
numerator as V (k,q;m,a) = P(k,q;m)+R(k,q;m,a). The integral thus decomposes as ÎJz = Î0

Jz +

ÎR
Jz. The denominator has been bounded by rational expressions; the a-dependent numerator R can

also be bounded by a set of polynomials Qib(k,q;m) and powers of a. Thus one obtains bounds:

|Î0
Jz| ≤ Ī0

Jz, |ÎR
Jz| ≤ ∑

b

Īb
Jz, (2.2)

where “barred” quantities indicate rational expressions that are subject to Reisz’s auxiliary power-

counting theorem.

We thereby prove that ÎJz with negative UV degree are finite, establishing the power-counting

theorem.

3. Resolutions of identity

3.1 Resolution on Ba

Here Ba = (−π
a , π

a ]4 is the usual Brillouin zone. Balls of size πε/a around each point in the
reciprocal lattice (2π/a)Z4 define ε-near regions; the remainder of momentum space consists of
ε-far regions:

ε-near: ||`− 2π
a z|| < π

a ε for some z ∈ Z4,
ε-far: otherwise.

(3.1)

Reisz introduces the following step function:

ΘB
ε (`) =

{

0 ε-near
1 ε-far

(3.2)
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Next note (Θ is Heaviside’s unit step function):

∑
z∈Z4

Θ
(

π
a

ε −
∣

∣

∣

∣

∣

∣
`−

2π
a

z
∣

∣

∣

∣

∣

∣

)

=

{

1 ε-near
0 ε-far

(3.3)

Thus: for any ` one can resolve identity as

1 = 1B(`) ≡ ΘB
ε (`)+ ∑

z∈Z4
Θ

(

π
a

ε −
∣

∣

∣

∣

∣

∣
`−

2π
a

z
∣

∣

∣

∣

∣

∣

)

. (3.4)

3.2 Resolution on reduced Brillouin zone B2a

Here B2a = (− π
2a , π

2a ]4 is the Brillouin zone for reciprocal lattice corresponding to the stag-
gered fermion poles. We use it to define a step-function that isolates all SF poles:

ΘF
ε (`) =

{

0 if ||`− π
a z|| < π

a ε for some z ∈ Z4 (= modified ε-near)
1 otherwise (= modified ε-far)

(3.5)

Now ε-near regions of the reduced reciprocal lattice (π/a)Z4 have been isolated. For any `

one can resolve identity as:

1 = 1F(`) ≡ ΘF
ε (`)+ ∑

z∈Z4
Θ

(π
a

ε −
∣

∣

∣

∣

∣

∣
`−

π
a

z
∣

∣

∣

∣

∣

∣

)

. (3.6)

4. The Jz sum

One breaks up the line momenta into those corresponding to bosons (gluons) and fermions
(quarks): `B

1 , . . . , `B
IB

and `F
1 , . . . , `F

IF
resp. Then one inserts into the Feynman integral, for each `i,

the resolutions of identity that are described above: 1B(`B
i ) defined in (3.4) and 1F(`F

j ) defined in
(3.6).

One obtains an expression analogous to Reisz’s—a sum of integrals that comprises a domain
decomposition:

Î = ∑
JB ,JF

∑
zB,zF

Î(JB,JF ,zB,zF) ≡ ∑
Jz

ÎJz,

JB ⊆ {1, . . . , IB}, JF ⊆ {1, . . . , IF},

zB = (zBi|i ∈ JB), zF = (zF j| j ∈ JF), (4.1)

with individual terms of the form:

ÎJz =

∫

Ba
L

d4Lk V (k,q;m,a)

∏IB
i=1CB(`B

i ;λ ,a)∏IF
j=1CF(`F

j ;m,a)

×∏
i∈JB

Θ
(

π
a

ε −||`B
i −

2π
a

zBi||

)

∏
i6∈JB

ΘB
ε (`B

i )

× ∏
j∈JF

Θ
(π

a
ε −||`F

j −
π
a

zF j||
)

∏
j 6∈JF

ΘF
ε (`F

j ). (4.2)

Note that J collectively denotes JB,JF , and so on. The decomposition has the following in-
tuitive meaning: `i ∈ J are “ε-near” to a lattice pole, whereas `i 6∈ J are “ε-far” from a lattice
pole.
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5. The shift

For ε ,a sufficiently small, the arguments of Reisz extend in an obvious way to show that there
exists k(0) ≡ (k(0)

1 , . . . ,k(0)
L ) ∈ Ba

L s.t.:

KB
i (k(0)) =

2π
a

zBi, KF
j (k(0)) =

π
a

zF j, i ∈ JB, j ∈ JF . (5.1)

Note that Ki(k) was defined by

`i(k,q) =
L

∑
j=1

Ci jk j +
E

∑̀
=1

Di`q` ≡ Ki(k)+Qi(q). (5.2)

Using the fact that `i are natural,2 it is a trivial extension of one of Reisz’s lemmas to prove that
there exist reduced reciprocal lattice vectors ∆1, . . . ,∆L ∈ π

a Z4 such that for i ∈ JB, j ∈ JF

KB
i (∆) =

2π
a

zBi, KF
j (∆) =

π
a

zF j. (5.3)

The ∆i are determined in terms of a basis chosen from {KB
i ,KF

j }, as explained by Reisz. Thus we
define new loop momenta k′i through:

ki = k′i +∆i ≡ k′i +
π
a

δi ∀ i = 1, . . . ,L, (5.4)

where in the last step integer-valued 4-vectors δi have been introduced for convenience, following
Reisz. A new domain of integration results:

σJ =
{

k′ ∈ R4L
∣

∣

∣
−

π
a
−∆iµ < k′iµ ≤

π
a
−∆iµ

}

, (5.5)

identical to the result of Reisz.
For the line momenta `B

i ∈ JB, `F
j ∈ JF , (5.4) has the effect

`B
i (k) = `B

i (k′)+
2π
a

zB
i , `F

j (k) = `F
j (k

′)+
π
a

zF
j , (5.6)

a generalization of Reisz corresponding expression. When this is accounted for in (4.2), the Heav-
iside step functions in (4.2) just force `B

i (k′) ∈ JB, `F
j (k

′) ∈ JF into the ε-neighborhood of the
(unique) pole in Ba and B2a respectively. As a consequence the following bounds hold:

C−1
B (`B

i ∈ JB) ≤ αB(`B
i (k′)2 +λ 2)−1,

C−1
F (`F

j ∈ JF) ≤ αF(`F
j (k

′)2 +m2)−1, (5.7)

generalizations of Reisz’s corresponding expression. Here, αB,αF are constants that always exist
for ε ,a sufficiently small. For `i 6∈ J, the line momenta are outside of the balls of radius επ/a

2This is a standard term, the definition of which can be found in [2].
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that are centered on sites of the (reduced) reciprocal lattice for (quarks) gluons. Therefore they are
bounded by:

C−1
B (`B

i 6∈ JB) ≤ γBa2, C−1
F (`F

j 6∈ JF) ≤ γF a2, (5.8)

generalizations of Reisz’s corresponding expression. Here, γB,γF are constants that always exist
for ε ,a sufficiently small.

For the line momenta `B
i 6∈ JB, `F

j 6∈ JF , the shift (5.4) is only guaranteed to have

`B
i (k)− `B

i (k′) = CB
im∆m ∈

π
a

Z4, `F
j (k)− `F

j (k
′) = CF

jm∆m ∈
π
a

Z4. (5.9)

6. The generalized UV degree and theorem

These considerations lead to the following generalization of Reisz’s theorem, which incorpo-
rates all possible changes of UV degree due to odd-π/a shifts. As a preliminary step, we define the
following set of four-vectors:

K ≡ {(04),(1,03),(12,02),(13,0),(14)}. (6.1)

The notation is as follows. In the definition of the set of 4-vectors K , powers indicate how many
times a 0 or 1 appears. Underlining indicates that all permutations of entries are to be included.

Now for the degree and theorem:
Definition. Let FA = VA/CA, A ∈ K L denote the transformed Feynman integrand. That is:

VA(k,q;m,a) = V (k +(π/a)A,q;m,a),

CA(k,q;m,a) = C(k +(π/a)A,q;m,a). (6.2)

Generalize the UV degree as follows:

degrûF = max
A∈K L

degrûFA, degrûFA = degrûVA −degrûCA;

degrĤ Î = 4d +degrûF. (6.3)

Recall that u1, . . . ,ud parameterizes the Zimmermann subspace H .
Proposition. Suppose that

degrĤ Î < 0 ∀ H ∈ H . (6.4)

Then Î converges, and

lim
a→0

Î = ∑
A∈K L

∫ ∞

−∞
d4Lk

PA(k,q;m)

EA(k,q;m)
, (6.5)

where

PA(k,q;m) = lim
a→0

VA(k,q;m,a), EA(k,q;m) = lim
a→0

CA(k,q;m,a) (6.6)

are just the continuum limits of the numerator and denominator resp. This indicates that various
regions of loop momenta may contribute to the continuum limit, due to the presence of doublers in
the fermion spectrum.
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7. The proof

Starting with (4.2), one makes the redefinition (5.4). Then the numerator is replaced by
VA(k′,q;m,a), as in (6.2). Once this has been done, ÎJz is in the form considered by Reisz. Due to
the assumption (6.4), the remainder RA in the decomposition

VA(k,q;m,a) = PA(k,q;m)+RA(k,q;m,a) (7.1)

does not contribute in the continuum limit, as follows from Reisz’s arguments in §7 of Reisz’s
work. Thus one can replace VA by the rational function PA in the numerator of ÎJz. Furthermore,
Reisz’s arguments show that the ÎJz term that maps to the index A ∈ K L just yields

IA =
∫ ∞

−∞
d4Lk

PA(k,q;m)

EA(k,q;m)
(7.2)

in the continuum limit. The result (6.5) follows immediately.
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