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Numerical results of two-dimensional-N (2, 2) super Yang-Mills theory Issaku Kanamori

1. Introduction

A lattice formulation of the supersymmetric gauge theory is important to unddrdtamon-
perturbative aspects. Recently some formulations are proposed bylsavthors[[2]. Most of
the models use the fact that a nilpotent part of the supersymmetry can berkeplattice for
N > 2 cases using the topological twist and the relations among some of themwabeooming
transparent[[3[]4[]5]. There is also an attempt to keep all the supersyynifdeff]. Another
approach is a model without exact supersymmdiry [1] which uses ththtdh two-dimensional
case, because of the super-renormalizability, there are only a fewufiireg parameters to obtain
the supersymmetric continuum limit. One of the merits of lattice formulation is to enabléoon
perform numerical simulations. In two-dimensional case, some resultsnavenkfor the super
Yang-Mills theory with the topological twisf]§] 9].

In this talk, we report the result of a humerical simulation of the model withoattesuper-
symmetry proposed iff][1]. We measure some 1-point and 2-point functions

2. Model and Algorithm

The target theory in the continuum is the 2-dimensidhal (2, 2) supersymmetric Yang-Mills
theory which is obtained by a dimensional reduction from the 4-dimensirall super Yang-
Mills. The lattice action is defined as a lattice version of a 4-dimensional actikmonx 1 x 1
lattice together with a scalar mass counter t&gntes*

S= SG+S:+S:0unteF (2-1)

The bosonic part is a plaquette action

SG[U]:ZBNC Z%Retr{l—P(x,M,N)}, (2.2)
P(x,M,N) = U(x,M)U/(x+aI\7I,N)U(x+ aN,M)~1U (x,N) "2, (2.3)

where we us&SU(Nc) gauge link variabled) (x, i) = exp(agA; (x)T#), (1 = 0, 1) and compact
scalar fieldsY (x,2) = exp(agp?(x)T?) andU (x,3) = exp(agp?(x)T?). The coupling constarg
is related tqB throughB = 2N, /a’g?. The fermion action consists of the Wilson-Dirac operator

1 3
SU,A] = - Ztr{)\ (X)CDwA(X)},  Dw= ENZ {Tm(Cyy+0Om) —aly0Ou},  (2.4)
Xe =0
with covariant differences for the adjoint representafipn
O (X) = g{U(X,M))\ (x+aM)U (x,M) "2~ A (x)} 2.5)

and its adjoint]y, . The counter term is

ScountefU] = —€'Nc Z (tr{U(x,3) +U(x,3) 1 =2} +tr{U(x,2) +U(x,2) *—=2}), (2.6

Xe

1For the notational details, se@ [1].
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where% = 0.6594825%8). The counter term is intended to cancel the radiative corrections to the
scalar mass term. Other corrections which might appear in the effective acésuppressed in
the continuum limit because of the super-renormalizability of this theory. Asinbe divergences

in the sub-diagrams in the perturbative expansion are suppressbduld e noted, however, that

it does not guarantee the supersymmetry of composite operators.

In our numerical simulation, we use quenched gauge configurationsagetdy using the
Hybrid Monte Carlo algorithm. The fermion contribution is introduced as a igivtiag by the
Pfaffian. In the continuum limit, the model has a real and positive Pfaffiefact the direct calcu-
lation for some sample configurations shows that the Pfaffian is real asitilpon our parameter
region. Therefore we use a positive square root of the determinaalwhmerical cost is much
less expensive. We set a bare fermion nrass 0. The lattice size is & 8 for 1-point functions
and 12x 12 for 2-point functions. Since the couplingfs= 2N;/a?g?, the continuum limit is the
B — o limit. We set 3< 8 < 40. The gauge group BU(2).

We summarize the parameters and the numbers of independent configuirataiis|[l.

€ B 40 20 13 10 8 7 5 3
0.001 301 301 301 301 301 301 - -
0.10939 num. - - - - 301 - - -

0.4 of - 9801 - - 9801 - - -
0.65948255| configs.| 801 9801 801 801 9801 801 801 801
1.0 - 9801 - - 9801 - - -
15 - 9801 - - 9801 - - -

ag 0.316 0.447 0.555 0.632 0.707 0.756 0.894 1.154

Table 1: The numbers of configurations for each parameter set>o8 Bttice.

3. One-point functions

It is of our interest to measure the vacuum expectation value of a s@pgezbxact operator,
(Q0), because it must vanish in the supersymmetric continuum limit. It should be, inowdver,
that(Q¢’) can be non-zero (a finite renormalization), depending on the definitiore@dimposite
operatorQ¢ which does not necessarily preserve the supersymmetry.

We make use of a scalar part of the topological twisted superch@gad observ€-exact 1-
point functions used if[4) 9]. Since we have no exact supersymmeéinjtatiattice spacings, first
we write down the continuum relations and then discretize them. We defineatae sapercharge
Q in the continuum as follows:

QM =Wi,  QUi=iDug?, Q¢ -0, 3.1)
Q9 =n® QL =—Sofmd"0".  QC=iFd. (3.2)

Here we introduce scalar fieldg = ¢ + i@ andg = ¢ —ip. Fermions in the twisted basig,, n
andy are given by liner combinations of the componenta ofn /2, x, Yo, Y1)" = TA.
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We use the following thre@’s:

[ — _ i —
1=~ farct*9", O2=—2X"Fo1 O3 =~ 5¥iDue". (33)

We divideQJd; into two partsQd; = F + B;, whereF contains fermions anB; is made only from
bosons:

i . [ [ —
Fi=—50fnc@®n’n®,  F2=ix*(Doyf ~D1yf) . Fs= 5 WiDun+ 50 fanch YU .

1 2 1 —
B1= —592 (fabc¢'b(ﬂlc> , B2=2(F§)?, Bs = 5Dy ¢°Due" (3.4)

In the continuum, the kinetic terms and Yukawa interactions of the twisted ferrmrensontained
in the Dirac operator. Therefore, to find an appropriate discretizatidhesfe terms, we simply
replace the continuum Dirac operator with the Wilson-Dirac operator. ¥anple, we replace

inDO% = o ((T"H)T(COW)T ), % (3.5)
All dimensionful observables are measured in a unit of the dimensionfiglicw g.

First, we present the result of th& case. Figurd]1 shows that each of the bosonic and
fermionic parts is divergent in the continuum limit. The sg@v’;) stays finite after the reweight-
ing by the Pfaffian, while the quenched result diverges (Fig. 2). Inttigiery, the cancellation of
divergences ifQ¢) is achieved by a balance between bosons’ and fermions’ degreezdbm.
Our reweighted result is consistent with this fact and the effect of dyref@omions appears to
be properly included by the reweighting. As already noted, even in thersymmetric contin-
uum limit, (Q&'1) can be non-zero due to a finite renormalization. #heependence ofQ01)
is summarized in FigurB 3. To estimate the effect of the finite renormalizationeteentined the
values of¢ which provide(Q&1) = 0. They ares’ = 1.047(51) at 3 = 8 and¢ = 1.006(77)
at B = 20. Almost noB-dependence is observed. These values are significantly diffement f
¢ = 0.65948255 calculated in the continuum limfi} [1] and suggest that the effetttecfinite
renormalization is certainly not negligible.

The cancellation of divergences is also realized botdif, and Qs cases (Fig[]4). The
%-dependence, however, is not manifest. Note that the plots have muchemarg than that of
(Q01) and this would imply that th&-dependence is smeared. The difference between behavior
of Q¢’, and that 0fQ&, andQd’s could be accounted as a result of the difference of the divergence
of each operator; andF; have logarithmic divergences, whis, Bz, /> andF; have quadratic
divergences.

4. Two-point functions

Next we measure quantities with which the restoration of supersymmetry istexlp® be
observed transparently. A supersymmetric Ward-Takahashi identityatedi¢hat the following
2-point functions should have the same functional férm:

B=2i (jsu(¥)jv(y)), F=(tr{yus(@®+idD) e 0y ) }),  (41)

2The former functiorB exhibits a power law behavior in the continuum the@ [10].
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Figure 1: Thea — O limit of By andF, the left is reweighted and the right is quenched. The couaten
is ¢ = 0.65948255. The lattice size is88.
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Figure 2. Thea — 0 limit of (QOy), the left is reweighted and the right is quenched. The katize is
8x 8.

where the bosonic currents are

ju(x) = anu Pa(x) , jsu(X) = anu ys(x) + 2i {(Padu $3(x) — (baau (Pa(x)} ) 4.2)
and the fermionic current is
- super, a 1 a ; a i a i C
Ju ") =1 Yu {ZFPJGPU_IYPDP((p +iys¢ )_|gfabc¢bfp VS} (%) - (4.3)

Figure[b shows a typical result of the 2-point functions. The numbereoftinfigurations we used
is 101 and the bare fermion mass is 0. According to the scenario, we ékpéeatsuitable choice
of ¥ should give the supersymmetric result, i.e., the identical spectra, while thecbibiees ofg
should not. Unfortunately, errors in the plot are too large to analyze terspalthough this is a
result with the quenched approximation. The point here is that we carstioigdiish the difference
of the counter term.

5. Conclusion

We observed 1-point functions and 2-point functions in a lattice formulatiothe two-
dimensionaN = (2,2) super Yang-Mills theory. In our scenario, only the counter term caoeiffic
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Figure 3: The @ dependence ofQ0;), the left is reweighted and the right is quenched. The kattice is
8x 8.
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Figure4: The@ dependence dfQ0;) (left) and(QOs) (right). These are reweighted and the lattice size is
8x8.

% should be finely tuned. The 2-point functions have large errors thatweot compare the spec-
tra associated with a bosonic current and a fermionic current. The 1{poictions we observed
are finite in the continuum limit because of the fermion loop effect. The resaliess divergent
1-point function depends d# and is consistent with our scenario. To obtain the conclusive result
from this dependence, i.e., whether the scenario actually works or naieggthe renormaliza-
tion factor for the 1-point function. Although the current result is nategpromising, we have
some possible ways to improve. A UV-filtered reweighting will help to reducesthers after the
reweighting. The HMC algorithm with dynamical fermions is another option.r€kealt of 2-point
functions suggests that the fermion or the scalar (or both) is ratheofarrfrassless so that a neg-
ative bare mass of the fermion which reduces the physical mass may impecsersitivity on the
counter term.
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