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1. Introduction

Numerical simulations of fermion systems have to deal with the Pauli principle which enforces
a completely anti–symmetric wave function for fermions. Obviously, this requirement makes
fermion systems extremely non–local. Changing the system at a single point affects all degrees
of freedom. In more technical terms, an ad–hoc local change may lead to a completely different
value of the fermion determinant. Thus intricate methods such as the hybrid Monte Carlo algorithm
were developed. Nevertheless, also these methods have to deal with the non–locality which makes
the simulation of fermions several orders of magnitude moreexpensive than bosonic systems.

Circumventing the non–locality problem altogether is certainly an extremely appealing idea.
A prominent example of a breakthrough in this direction is the Meron Cluster Algorithm proposed
in [1], which allows for highly effective Monte Carlo simulation for certain classes of fermionic
models.

An alternative approach is a formal solution of the Grassmann path integral for fermions which
represents the partition function of the system as a model ofclosed fermion loops. While for a long
time this technique has been known to work well in the strong coupling limit, only recently [2, 3]
loop representations were found for two–dimensional lattice field theories at arbitrary coupling, in
particular the Gross–Neveu model [4].

In a recent publication [5] it was shown that the loop representation allows for an efficient
and considerably cheaper simulation than traditional methods. In a subsequent paper [6] Wolff has
rederived the loop representation by decomposing 2–d Diracfermions into Majorana components
and demonstrated that the loop formulation can be recast as aspin system where a cluster algorithm
boosts the efficiency of a numerical simulation further.

In this contribution we review the loop representation of the lattice Gross–Neveu model and its
use for a numerical simulation. We furthermore discuss the loop representation of the Schwinger
Model [7], i.e., QED in two dimensions, an example which illustrates the limitations of the loop
approach for a use in numerical simulations.

2. Loop representation of the lattice Gross–Neveu model

We consider the lattice Gross–Neveu model withN flavors of Wilson fermions. The lattice action
for the fermions is given by (we set the lattice spacing toa = 1)

SF [ψ ,ψ ,ϕ ] = ∑
x∈Λ

ψ(x)D(x,y)ψ(y) ,

D(x,y) =
[

2 + m+ ϕ(x)
]

δx,y −
±2

∑
µ=±1

1∓ γµ

2
δx+µ̂ ,y . (2.1)

The sum runs over the 2–d latticeΛ. In two dimensions theγ–matrices may be chosen as the Pauli
matrices,γ±µ = σµ . The spinorsψ andψ are vectors ofN 2–d spinors, and we use vector/matrix
notation for both the spinor and flavor indices. Through the Dirac operatorD(x,y) all flavors couple
in the same way to the real scalar fieldϕ , which has the action

SS[ϕ ] =
1
2g ∑

x∈Λ
ϕ(x)2 . (2.2)
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When integrating out the scalar field the 4–fermi interaction

− g
2 ∑

x∈Λ

(

ψ(x)ψ(x)
)2

(2.3)

is induced. The partition function of the model is given by

Z =
∫

∏
x

dϕ(x)dψ(x)dψ(x)e−SS[ϕ ]−SF [ψ ,ψ ,ϕ ] =
∫

∏
x

dϕ(x)e−SS[ϕ ] det
(

D[ϕ ]
)N

, (2.4)

where in the second step the fermions were integrated out giving rise to a remaining path integral
over the scalar field with the fermion determinant raised to the powerN as integrand.

The last expression is a possible starting point for identifying the loop representation. The
Dirac operatorD may be rewritten as

D(x,y) =
[

2 + m+ ϕ(x)
]

[

δx,y − H(x,y)
]

, (2.5)

H(x,y) =
1

2 + m+ ϕ(x)

±2

∑
µ=±1

1∓ γµ

2
δx+µ̂,y ,

where we have combined all nearest neighbor terms in the hopping matrixH. Inserting the repre-
sentation (2.5) into the partition function (2.4) one finds

Z =

∫

∏
x

dφ(x)e−SS[ϕ ] ∏
x

(

2 + m+ ϕ(x)
)2N

det
(

1−H[ϕ ]
)N

=

∫

∏
x

dφ(x)e−SS[ϕ ] ∏
x

(

2 + m+ ϕ(x)
)2N

(

exp

(

−
∞

∑
n=1

1
n

Tr
[

Hn
]

))N

, (2.6)

where we have used the formula det[1−H] = exp(Tr ln[1−H]) for the determinant and expanded
the logarithm.

The expression (2.6) is the well known hopping expansion. Atthis point the loops are al-
ready evident: The hopping matrixH is a matrix which describes hopping between neighboring
lattice points. Consequently the powerHn in (2.6) corresponds to a chain ofn subsequent steps.
When taking the trace only closed chains, i.e., loops survive. Such an expansion holds in arbitrary
dimensions and for different types of bosonic fields, scalar, as well as gauge fields.

The crucial step, however, is that the traces Tr[Hn] in (2.6) can be evaluated only in special
cases. In addition to the space–time indices, this trace is over Dirac and for non–abelian gauge
theories also over the color indices. For the latter a simpleclosed form is probably not realistic.
Concerning the Dirac indices, in two dimensions it is possible [8] to find a closed form for the trace
over the matrices[1±γµ ]/2 which enter the hopping matrix (2.5). Thus for the case of non–abelian
interactions in two dimensions the exponent in (2.6) can be computed in closed form.

As discussed, for special cases (scalar or abelian bosonic fields in 2–d) the coefficients for the
individual loops in the exponent of (2.6) can be computed analytically. The final step is to bring
the loops down from the exponent. Here two different approaches were followed in [3] and [7]. In
the former case the final expression for the loop representation was obtained by comparing the 2–d
Wilson fermions to the hopping expansion of a 8–vertex model. In the latter case a direct evalua-
tion of the exponential of the sum over loops was performed. Again we remark that there is also
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the direct identification of the loop representation through the explicit solution of the Grassmann
integral for the Majorana components [6].

Once the determinant is given as a sum over loops with known coefficients (not as the expo-
nential of a sum over loops) there is only the path integration over the bosonic variables attached to
the loops left to be done. For the case of the scalar fields which give rise to the 4–fermi interaction,
the path integration is trivial, since at each lattice pointonly moments of the Gaussian distribution
need to be computed. In this way the partition function of theN–flavor lattice Gross–Neveu model
is found to be a model of 2N self–avoiding loops. For the case of generalN we refer the reader to
[2], and here quote the result forN = 1, which is the case that was used in the numerical simulations
[5, 6]. The partition function reads

Z = ∑
r,b

(

1√
2

)c(r,b)

f n1(r,b)
1 f n2(r,b)

2 . (2.7)

The sum runs over two sets of loops which we refer to as red (r) and blue (b). For a given color
the loops are self avoiding, i.e., they cannot cross or toucheach other, while loops of different
may do so. In Eq. (2.7)c(r,b) is the total number of corners for both, red and blue loops. Thus
every corner contributes a factor of 1/

√
2 to the weight of a configuration. Furthermore,n1(r,b)

is the number of lattice sites which are singly occupied by either r or b andn2(r,b) is the number
of doubly occupied sites, i.e., sites which are visited by both, a red and a blue loop. The weight
factors f1 and f2 are simple functions, related to the massmand the couplingg through

f1 =
2+m

(2+m)2+g
, f2 =

1
(2+m)2+g

. (2.8)

The mapping (2.7), (2.8) is exact in the thermodynamic limit. For finite volume different types of
boundary conditions in the two representations lead to finite size effects: In the loop representa-
tion we need to have closed loops and in a finite volume the loops can wind around the periodic
boundary. The loop configurations fall into three equivalence classes,Cee,Ceo,Coo, depending on
the numbers of red and blue non–trivially winding loops (seealso [9]): Cee (even–even): The to-
tal number of windings for both, red and blue loops is even forboth directions.Ceo (even–odd):
One of the colors has an odd number of windings for one of the directions.Coo (odd–odd): Both
colors have an odd number of windings in one of the directions. These equivalence classes can-
not be linked in a simple way to the boundary conditions in thestandard representation which we
discussed above. However, in [5] it was shown that the boundary effects vanish as 1/

√
V, with V

denoting the volume. The representation in terms of the Ising spin variables [6] solves the boundary
condition problem completely, and the partition functionsof the original fermionic– and the spin
representation are identical also on finite volumes.

3. Numerical simulation

For the numerical simulation of the loop representation of the Gross–Neveu model we use a
local Metropolis update. Red and blue loops are updated alternately by performing a full sweep
through the lattice for only one color and meanwhile treating the other as a constant background
field. During one sweep all plaquettes are visited once. A trial configuration is offered by inverting
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Figure 1: Typical loop configurations in the 1–flavor Gross–Neveu model. We compare two different values
of the parameters. L.h.s.:g = 0.0,m= 0.1; r.h.s.:g = 0.0,m= 0.2.

the 4 links of the current plaquette of the active color. Withsuch an offer, we guarantee that the
loops stay closed, or new loops are created if all links of theplaquette were empty before. In
case that the self–avoidance condition is violated, the proposal is rejected. Otherwise the new
configuration is accepted with the Metropolis probability

p =

(

1√
2

)∆c

f ∆n1
1 f ∆n1

1 . (3.1)

∆c is the difference of the number of corners,∆n1 and∆n2 are the differences in the occupation
numbers. Fig. 1 shows snapshots of typical loop configurations in the numerical simulation.

Particularly simple observables are derivatives of the free energyF = − lnZ. These expres-
sions can be written as moments of occupation numbers. To be more explicit we discuss the chiral
condensateχ and its susceptibilityCχ . The conventional definitions are

χ =
1
V ∑

x∈Λ
〈ψ(x)ψ(x)〉 = − 1

V
∂ lnZ
∂m

, (3.2)

Cχ =
∂ χ
∂m

. (3.3)

In terms of loop variables these expressions read

χ = − 1
V f1

[

f2〈n1〉 + 2 f 2
1 〈n0〉

]

, (3.4)

Cχ = − 1

V f2
1

[

(4 f 4
1 −2 f 2

1 f2)
〈

(n0−〈n0〉)2〉 + ( f 2
2 −2 f 2

1 f2)
〈

(n1−〈n1〉)2〉

+2 f 2
1 f2
〈

(n0 +n1−〈n0 +n1〉)2〉 − (4 f 4
1 −2 f 2

1 f2)〈n0〉− f 2
2 〈n1〉

]

, (3.5)
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Figure 2: L.h.s.: The chiral condensateχ for g = 0 as a function ofm for 2 different lattice sizes. We
compare the simulation in the loop representation (symbolswith error bars) to the exact result from Fourier
transformation (curves). R.h.s.: Same as on the l.h.s., nowfor the chiral susceptibilityCχ .

where the numbern0 is the total number of empty lattice sites. These representations were obtained
by differentiating the partition function (2.7).

In Fig. 2 we compare the loop results atg = 0 (symbols) with those from Fourier transfor-
mation (curves) which is applicable in standard representation for the special case of vanishing
coupling. Two volumes are used, the relatively small lattice 32×32 and a substantially larger lat-
tice of 512×512. For each value ofm typically 10000 sweeps were used to equilibrate the system
and then about 50000 measurements were performed for our observables. These measurements
have been separated by 10 sweeps for each color to guarantee sufficient decorrelation. For the cal-
culation of the observables we used Eqs. (3.4), (3.5), and the statistical error was computed with
the jackknife method. For the larger lattice we find almost perfect agreement of the results from
the loop representation with the analytic results. In [5] wehave presented the results from the loop
simulation for several values ofg 6= 0 and we compared these to the outcome of a simulation with
traditional techniques. Concerning the performance we findthat with comparable amounts of CPU
time with the loop representation we can work on volumes which are two orders of magnitude
larger than those available with traditional techniques. The cluster approach of [6] enhances this
performance further.

4. Perspectives and limitations of the loop representation

Having addressed the merits of the loop representation for the Gross–Neveu model, we would
like to comment on possible extensions of the loop method, but also discuss the points where we
see limits of the method.

We begin this discussion with stressing that, although we sofar restricted our numerical sim-
ulations to only two flavors, a generalization to the Gross–Neveu model with an arbitrary number
of flavors is straightforward with the loop formula given in [2].

Concerning models with relativistic fermions which are coupled via 4–fermi interactions in
higher dimensions, one could try to repeat the strategy thatled to the loop representation for the
2–d models. An essential step in the identification of the loop formalism was the closed result for
the traces of theγ–matrices. While this is a relatively simple problem in 2–d,the corresponding
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structures in 4–d are considerably more involved. For an attempt to find such a closed formula in
four dimensions see, e.g., [10].

Interesting might also be the case of non–relativistic fermions in 2+1 dimensions with 4–fermi
interaction. For some of these systems a relation to 3–d spinmodels is known [11, 12] which might
be useful for a numerical simulation.

We finally comment on the applicability of the loop approach to lattice gauge theories beyond
the strong coupling limit. We have already mentioned, that we judge the case of non–abelian gauge
fields as an elusive goal, due to the non–commutativity of thelink variables. For abelian gauge
fields the situation is simpler and in 2–dimensions the loopsin (2.6) can again be computed in
closed form. The resulting loop representation for the lattice Schwinger Model [7] is of a different
type, however. Since gauge fields are oriented quantities, one has to work with oriented loops,
while the loops for a scalar interaction are non–oriented (see Eq. (2.7)). One finds that reverting
the orientation of a loop corresponds to complex conjugation of its contribution. This implies, that
certain cancellations among loops, which simplify the scalar case, are no longer possible [7]. The
loops for the Schwinger Model turn out to be self–intersecting and an extra minus sign appears
for each intersection. In a numerical simulation [13] it wasfound that the resulting fermion sign
problem limits the size of the accessible volumes. At the moment it is unclear whether this is a
fundamental obstacle or if this problem can be overcome by different techniques.
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