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1. Introduction

Massive neutrinos can be incorporated in the Standard nwitdelMajorana fermions that
become massive via spontaneous symmetry breaking. This geseration relates to a chirally
symmetric Yukawa term. Majorana fermions with chiral synmpealso play a rble for physics
beyond the standard model, e.g. in supersymmetric theoretattice approach to the related
physics problems has to be based on an appropriate lattielfation of Majorana fermions in the
presence of chiral symmetry [1, 2, 3, 4], for Majorana femsion the lattice see e.qg. [5, 6, 7, 8, 9].

In the present note we want to address the related obstngcéind provide a construction
of chirally coupled Majorana fermions. We believe that tbomstruction may also prove useful
for the construction of supersymmetric theories on théckttWithin a lattice formulation, chiral
symmetry becomes non-trivial due to the Nielsen-Ninomigego theorem [10, 11, 12, 13], and
we expect related obstructions for chirally coupled Majardermions. Indeed there appears a
certain conflict between the definition of the Majorana femmsi and lattice chiral symmetry in
the presence of Yukawa couplings. The conflict is closelsites] to the requirements of locality
and of avoiding species doubling, which are the basic isefi&ttice chiral symmetry. It causes
an obstruction in constructing the simplest supersymmetiodel, the Wess-Zumino model on a
lattice, and also in showing CP invariance of chiral gaugetj see e.g.[14, 15].

Before we discuss the lattice obstruction we want to reakgié the continuum formulation of
chirally coupled Majorana fermions with an emphasis onm-#iuclidean space-time. Majorana
fermions are neutral fermions and obey a reality constraint4-dim Eulicdean space-time the
charge conjugation operatGrhas the properties

CyCt=-y,, CwC'=y, clc=1u, Cc'=-cC. (1.1)
Majorana fermions are defined via the reality constraint
Yy =By, (1.2)

whereC = Bys. However, (1.1) implie8*B = —1l and hence we cannot implement the reality
constraint (1.2) as it fails to satisfy the consistency ¢omdl ¢y = (. Doubling the degrees of
freedom suffices to implement the reality constraint with

U= RBY, with Y= (L/J2>’ and %A= <—B O)' (1.3)

The symplectic structure o® leads to%*% = 1l following from (1.1) withB*B = —1I. Thus the
reality constraintyy** = (, is satisfied. The corresponding charge conjugation ogeisaprovided

by
(oc) . (- 0
%—(C 0>_%’F5, with F5_< 0 yg) (14)

The above properties of the symplectic Majorana fermdix its behaviour under chiral rotations,

LIJ—)(l—i—iErg,)l,U. (1.5)
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Now we are in the position to construct a chirally invarianajbtana action. We summarise the
necessary properties,

C=Brs, Crs¢t=-1L, <'e=1, < =-9%, (1.6)
and construct the corresponding chirally invariant Majaraction
Syl = [dxyTE oy = [ d'x (WD + ¢ICDY) @.7)
with
7 (g 8) , and (¢92)"'=-%¢92. (1.8)

The action (1.7) could also be obtained by a Majorana regluctee e.g. [16, 17]. We remark that
skew symmetry of’Z is not required but only the skew-symmetric partd¥ contributes to the
actionS. The definitions (1.8) imply

(CD)"=-CD, and D*=BDB, (1.9)
for the Dirac operatoD. The combined properties (1.9) hold for the standard cBinalc operator
with

5D +Dy =0, (1.10)

such a®D = y;,d,, for which (1.9) can be deduced from (1.1). The action (Is&hirally invariant
under a chiral transformation with (1.5) if

M52 — 9Ts =0, (1.11)

which is valid for 2 with the standard Dirac operator (1.10). Finally we reméudt the action
(1.7) is real, as follows from (1.9). It is instructive to neathis reality explicit by rewriting the
action (1.7) with the help of the above relations,

Sy = [ d (D -+ 4lwDys) (L.12)

Note that (1.12) is even real for unconstrained Dirac fermig, (» in contrast to (1.7). For the
construction of a chirally invariant Yukawa term we intraéichiral projection operators related to
Msin (1.5),

_1

7=3

(1+r5):<g 1E’P>, with P:%(l—ys). (1.13)

The chiral projection operators’, (1— &) allows us to project on left-handed and right-handed
spinors. With these projections we can couple the Majoramaibns to a chirally invariant Yukawa
term,

Sy.9l = g [ dX(YTE 29" Y YT (1- 2)pp)

= 9/d4X(LU1TC P Y1+ yn"C(1-P)p yn
+yp"CPYT Y+ Y "C(1-P)Py), (1.14)
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where¢ is a complex scalar,

Q= (2 g) , with @— (1-2ig)g. (1.15)
Note that the scalar fiel@ is off-diagonal and hence does not commute with the prajeaper-
ators, we have e.gZ¢" = ¢'(1— ). The actiongy] + Sy[y, ¢] is invariant under the trans-
formation (1.5) of the fermions and that in (1.15) for thelacéield ¢ related top — (1—2i¢)¢.
This concludes our brief summary of chirally coupled Maj@dermions in the continuum. Due
to chiral symmetry, and in particular the use of chiral pctjns in (1.14) we expect obstructions
for putting the above theory on the lattice.

2. Lattice formulation and topological obstructionsfor Majorana fermions

Chiral symmetry on the lattice differs from that in the contim as consistent chiral trans-
formations necessarily depend on the Dirac operator. Hesgclrst dicuss the properties of the
lattice version of the Dirac action (1.7)

Swl= Y ¢ XECD(x—-y)P(y), (2.2)

X,yeN

with the lattice Dirac operatdd(x—y) used in the definition of/ as defined in (1.8). Assume for
the moment thab (x—y) is of Ginsparg-Wilson type [1] with

D+ Dy =aDyD. (2.2)
Then the chiral transformation
Yy — (l—i—iErdl—%aD))l,U, (23)

is an invariance of (2.1). However, smooth chiral projewi® and &2 cannot be constructed,
which is reflected in the fact that the transformation (2a)ishes at the doublers. This is a conse-
guence of the well-known Nielsen Ninomiya (NN) no-go thenfd0, 11, 12, 13], which provides
obstructions for putting chiral fermions on the lattice.n§iarg-Wilson fermions [1] circumvent
the no-go theorem with a modified chiral symmetry (2.2), Whéan be reformulated as

ysD +Dys =0, with Y6 = y(1—aD), (2.4)
and chiral projections
P=1(1-y), P=11-%). (2.5)

The general case going beyond Ginsparg-Wilson fermiomsydmg e.g.[18, 19], only resorts to
general chiral projectionB, P, which are compatible:

(1-P)D=DP. (2.6)
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It has been shown in [20] that projection operatBr® carry a winding number that is related to
the total chiralityx of the system at hand,

. 2
x=nP]-n1-P], with nP= % (ﬁ)

if Py =  in the action. Eq. (2.7) also entails that for odd chirafityPy and Py live in topo-
logically different spaces, and hence have to be differbmthe present case the total chiraljy
is even due to the symplectic construction. The continuutkeMa action, however, contains pro-
jection operators”,1— & with P, 1— P on chiral sub-spaces witt? y # , that is on fermionic
sub-systems with odd chirality. Thus we have to worry abbatuse of projection operators in the
Yukawa actiorS,.

The first question that arises in this context is whether dttéeck Yukawa action can be con-
structed such that it is left invariant under the chiral sfarmations (2.3), and tends toward the
continuum action. This would require the existence of a smoperator® which reduce® — P
in the continuum limit, and ensures invariance of the Yukeva under the combined transforma-
tion (2.3) and (1.15). However, g§(1— D) is not normalised and even vanishes at the doublers
such an operatdP cannot exist, even if one relaxes the projection propBfty- P, see also [21].
This important results will be detailed elsewhere.

In turn it is required that the chiral transformation mustdmenpatible with the projection
operators used in the Yukawa term. This already exclud&3. (@/ithout loss of generality we can
restrict ourselves to the chiral transformation

Y — (A+iefs)yp, — W'é — Y e[e  (1+ief 1)), (2.8)

A4 trP(dP)*. € Z, (2.7)

where? is a lattice generalisation &. Then, chiral invariance of the acti@in (2.1) leads to the
constraint

¢ Wi =-Ts, with T[s2=9fs. (2.9)
We conclude that invariance of the lattice action (2.1) unide chiral transformations (2.8) would
require
% =CyC 1, (2.10)
which mapsys carrying the winding numben[P] to s carrying the winding numben[P]. Note
that using differents’s in the definition off 5 still leads to the same conclusion (2.10). In order

to elucidate this obstruction we use Ginsparg-Wilson fermias an example. There the relation
(2.10) reads

(1—aD")yd =CyC 1, (2.11)
with a possible solution
C=C(1-laD). (2.12)
TheCin (2.12) has zeros at the doublers, and the relative winglimgber is carried by these zeros.
Inserting a lattice€ in (2.12) into the action (2.1) we encounter zeros or singfida of the operator
C-1D at the positions of the doublers. This brings back the daghtiroblem. Consequently we

have to usendependenMajorana fieldsy, ¢’ with different chiral transformation properties for
the construction of Majorana actions.
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3. Construction of M ajorana actions on the lattice

Now we are in the position to construct chirally coupled Majma fermions on the lattice. In
line with the arguments of the last section we introduce & afthe original symplectic Majo-
rana fermion,/’. Then chiral invariance is easily arranged for with appiatpr different, chiral
transformations foxy and ¢/’ respectively. Furthermore we have to ensure that our patigrial
results in Pfaffians of the Dirac operator which signals Maja fermions. The corresponding
lattice action reads

Sul= 5 W E2x-YP(y), (3.1)
X,YEN
with the Yukawa term
Sl gl =9y (V62 ¢ Q- 2W+y 61— 2)02y) (3:2)
X,yeN

where#? = (1+I5)/2, 2 = (1+5)/2. We emphasise that in contradisctinction to the continuum
theory in general we have?@' # @' (1— 22) and Z¢' +# ¢'(1— &) as the projection operators
7,2 depend on the Dirac operator. The act®n S, is invariant under the chiral transformations

W— A+iels)w, ¢ — (A+iels)y,  @— (1-2¢)o. (3.3)

The actionS+ Sy reduces to the continuum action in the continuum limit, bitiha doubling of the
field content. This doubling can be removed by appropria¢daptors in the action, or by simply
taking roots of the generating functional However, it is left to prove the Pfaffian nature of the
path integral. Since we have doubled the degrees of freedermowld have constructed a Dirac
fermion out of two Majorana fermions. To that end we conaaston the path integral of the pure
Majorana action [22, 23] including a mass term for dealinthvtne zero modes. The generating
functional is given by

Z= [ [ dundysidyiduy’ e 544, (3.4
with the action
no_ /T . s T 01
Sy, = vaZeAw X)E2(x—y)p(y) ImeeAw (x)¢ (1 O) Csy(y)
=-3 [(An+im)(bhen+ bncy) +c.c.] (3.5)

where we have used the following expansion in terms of eigations ofysD:

Y= Z (Chnon+bng) , with ¥sD@n = Andn, (3.6)

n

andg, = y5C 1. The above relations allow us to show that

e (A ) 2 4 P’
Z a2+ |‘| (Ay+mo)". (3.7)

0<An#2/a
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with the massless limi = (%)N*+N’ Mo<Arz2/aAs- In conclusion we find that
Z = PHRCD)?PHC*D*)2. (3.8)

We close with a short summary. We have shown that the cotistnuof a theory with chirally
coupled Majorana fermions on the lattice has to deal withugeal topological obstructions well-
known from the construction of chiral fermions, even thotigh total chirality is even. The ob-
struction is related to the use of chiral projection opesatn the Yukawa term. This problem is
resolved by doubling the degrees of freedom, and the Pfafhture of the path integral is proven.
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