
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
7
5

On Majorana fermions on the lattice

Jan M. Pawlowski∗
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16,
69120 Heidelberg, Germany
E-mail: j.pawlowski@thphys.uni-heidelberg.de

Yuji Igarashi
Faculty of Education, Niigata University, Ikarashi,
950-2184, Niigata, Japan
E-mail: igarashi@ed.niigata-u.ac.jp

The construction of massless Majorana fermions with chiralYukawa couplings on the lattice
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Ninomiya no-go theorem. In contradistinction to chiral fermions the obstructions originate only

from the combination of the Dirac action and the Yukawa term.These findings are used to con-

struct a chirally invariant lattice action. We also show that the path intgral of this theory is given

by the Pfaffian of the corresponding Dirac operator.
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1. Introduction

Massive neutrinos can be incorporated in the Standard modelwith Majorana fermions that
become massive via spontaneous symmetry breaking. This mass generation relates to a chirally
symmetric Yukawa term. Majorana fermions with chiral symmetry also play a rôle for physics
beyond the standard model, e.g. in supersymmetric theories. A lattice approach to the related
physics problems has to be based on an appropriate lattice formulation of Majorana fermions in the
presence of chiral symmetry [1, 2, 3, 4], for Majorana fermions on the lattice see e.g. [5, 6, 7, 8, 9].

In the present note we want to address the related obstructions and provide a construction
of chirally coupled Majorana fermions. We believe that thisconstruction may also prove useful
for the construction of supersymmetric theories on the lattice. Within a lattice formulation, chiral
symmetry becomes non-trivial due to the Nielsen-Ninomiya no-go theorem [10, 11, 12, 13] , and
we expect related obstructions for chirally coupled Majorana fermions. Indeed there appears a
certain conflict between the definition of the Majorana fermions and lattice chiral symmetry in
the presence of Yukawa couplings. The conflict is closely related to the requirements of locality
and of avoiding species doubling, which are the basic issuesof lattice chiral symmetry. It causes
an obstruction in constructing the simplest supersymmetric model, the Wess-Zumino model on a
lattice, and also in showing CP invariance of chiral gauge theory, see e.g.[14, 15].

Before we discuss the lattice obstruction we want to recapitulate the continuum formulation of
chirally coupled Majorana fermions with an emphasis on 4-dim Euclidean space-time. Majorana
fermions are neutral fermions and obey a reality constraint. In 4-dim Eulicdean space-time the
charge conjugation operatorC has the properties

CγµC−1 = −γT
µ , Cγ5C

−1 = γT
5 , C†C = 1l , CT = −C. (1.1)

Majorana fermions are defined via the reality constraint

ψ∗ = Bψ , (1.2)

whereC = Bγ5. However, (1.1) impliesB∗B = −1l and hence we cannot implement the reality
constraint (1.2) as it fails to satisfy the consistency condition ψ∗∗ = ψ . Doubling the degrees of
freedom suffices to implement the reality constraint with

ψ∗ = Bψ , with ψ =

(

ψ1

ψ2

)

, and B =

(

0 B
−B 0

)

. (1.3)

The symplectic structure ofB leads toB∗B = 1l following from (1.1) withB∗B = −1l. Thus the
reality constraint,ψ∗∗ = ψ , is satisfied. The corresponding charge conjugation operator is provided
by

C =

(

0 C
C 0

)

= BΓ5 , with Γ5 =

(

−γ5 0
0 γ5

)

. (1.4)

The above properties of the symplectic Majorana fermionψ fix its behaviour under chiral rotations,

ψ → (1+ iεΓ5)ψ . (1.5)
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Now we are in the position to construct a chirally invariant Majorana action. We summarise the
necessary properties,

C = BΓ5 , C Γ5C
−1 = −ΓT

5 , C
†
C = 1l , C

T = −C , (1.6)

and construct the corresponding chirally invariant Majorana action

S[ψ ] =
∫

d4xψT
C Dψ =

∫

d4x
(

ψT
1 CDψ1 + ψT

2 CDψ2
)

(1.7)

with

D =

(

0 D
D 0

)

, and (C D)T = −C D . (1.8)

The action (1.7) could also be obtained by a Majorana reduction, see e.g. [16, 17]. We remark that
skew symmetry ofCD is not required but only the skew-symmetric part ofC D contributes to the
actionS. The definitions (1.8) imply

(CD)T = −CD, and D∗ = BDB−1 , (1.9)

for the Dirac operatorD. The combined properties (1.9) hold for the standard chiralDirac operator
with

γ5D+Dγ5 = 0, (1.10)

such asD = γµ∂µ , for which (1.9) can be deduced from (1.1). The action (1.8) is chirally invariant
under a chiral transformation with (1.5) if

Γ5D −DΓ5 = 0, (1.11)

which is valid forD with the standard Dirac operator (1.10). Finally we remark that the action
(1.7) is real, as follows from (1.9). It is instructive to make this reality explicit by rewriting the
action (1.7) with the help of the above relations,

S[ψ ] =

∫

d4x
(

ψ†
2γ5Dψ1 + ψ†

1γ5D†ψ2

)

. (1.12)

Note that (1.12) is even real for unconstrained Dirac fermions ψ1,ψ2 in contrast to (1.7). For the
construction of a chirally invariant Yukawa term we introduce chiral projection operators related to
Γ5 in (1.5),

P =
1
2
(1+ Γ5) =

(

P 0
0 1−P

)

, with P =
1
2
(1− γ5) . (1.13)

The chiral projection operatorsP, (1−P) allows us to project on left-handed and right-handed
spinors. With these projections we can couple the Majorana fermions to a chirally invariant Yukawa
term,

SY[ψ ,φ ] = g
∫

d4x
(

ψT
C Pφ† ψ + ψT

C (1−P)φψ
)

= g
∫

d4x
(

ψ1
TCPϕ ψ1 + ψ1

TC(1−P)ϕ†ψ1

+ψ2
TCPϕ† ψ2 + ψ2

TC(1−P)ϕψ2
)

, (1.14)
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whereϕ is a complex scalar,

φ =

(

0 ϕ
ϕ 0

)

, with φ → (1−2iε)φ . (1.15)

Note that the scalar fieldφ is off-diagonal and hence does not commute with the projection oper-
ators, we have e.g.Pφ† = φ†(1−P). The actionS[ψ ] + SY[ψ ,φ ] is invariant under the trans-
formation (1.5) of the fermions and that in (1.15) for the scalar field φ related toϕ → (1−2iε)ϕ .
This concludes our brief summary of chirally coupled Majorana fermions in the continuum. Due
to chiral symmetry, and in particular the use of chiral projections in (1.14) we expect obstructions
for putting the above theory on the lattice.

2. Lattice formulation and topological obstructions for Majorana fermions

Chiral symmetry on the lattice differs from that in the continuum as consistent chiral trans-
formations necessarily depend on the Dirac operator. Hencewe first dicuss the properties of the
lattice version of the Dirac action (1.7)

S[ψ ] = ∑
x,y∈Λ

ψT(x)C D(x−y)ψ(y) , (2.1)

with the lattice Dirac operatorD(x−y) used in the definition ofD as defined in (1.8). Assume for
the moment thatD(x−y) is of Ginsparg-Wilson type [1] with

γ5D+Dγ5 = aDγ5D . (2.2)

Then the chiral transformation

ψ → (1+ iεΓ5(1−
1
2

aD))ψ , (2.3)

is an invariance of (2.1). However, smooth chiral projections P andP cannot be constructed,
which is reflected in the fact that the transformation (2.3) vanishes at the doublers. This is a conse-
quence of the well-known Nielsen Ninomiya (NN) no-go theorem [10, 11, 12, 13] , which provides
obstructions for putting chiral fermions on the lattice. Ginsparg-Wilson fermions [1] circumvent
the no-go theorem with a modified chiral symmetry (2.2), which can be reformulated as

γ5D+Dγ̂5 = 0, with γ̂5 = γ5(1−aD) , (2.4)

and chiral projections

P = 1
2(1−γ5), P̂ = 1

2(1−γ̂5) . (2.5)

The general case going beyond Ginsparg-Wilson fermions, including e.g.[18, 19], only resorts to
general chiral projectionsP, P̂, which are compatible:

(1−P)D = DP̂. (2.6)
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It has been shown in [20] that projection operatorsP, P̂ carry a winding number that is related to
the total chiralityχ of the system at hand,

χ = n[P̂]−n[1−P] , with n[P] ≡
1
2!

(

i
2π

)2∫

T4
trP(dP)4 . ∈ Z , (2.7)

if P̂ψ = ψ in the action. Eq. (2.7) also entails that for odd chiralityχ , P̂ψ andPψ live in topo-
logically different spaces, and hence have to be different.In the present case the total chiralityχ
is even due to the symplectic construction. The continuum Yukawa action, however, contains pro-
jection operatorsP,1−P with P,1−P on chiral sub-spaces withPψ 6= ψ , that is on fermionic
sub-systems with odd chirality. Thus we have to worry about the use of projection operators in the
Yukawa actionSY.

The first question that arises in this context is whether the lattice Yukawa action can be con-
structed such that it is left invariant under the chiral transformations (2.3), and tends toward the
continuum action. This would require the existence of a smooth operatorP̃ which reduces̃P→ P
in the continuum limit, and ensures invariance of the Yukawaterm under the combined transforma-
tion (2.3) and (1.15). However, asγ5(1− a

2D) is not normalised and even vanishes at the doublers
such an operator̃P cannot exist, even if one relaxes the projection propertyP̃2 = P̃, see also [21].
This important results will be detailed elsewhere.

In turn it is required that the chiral transformation must becompatible with the projection
operators used in the Yukawa term. This already excludes (2.3). Without loss of generality we can
restrict ourselves to the chiral transformation

ψ → (1+ iεΓ̂5)ψ , −→ ψT
Ĉ → ψT

Ĉ [Ĉ−1(1+ iεΓ̂T
5 )Ĉ ] , (2.8)

whereĈ is a lattice generalisation ofC . Then, chiral invariance of the actionS in (2.1) leads to the
constraint

Ĉ
−1Γ̂T

5 Ĉ = −Γ5 , with Γ5D = DΓ̂5 . (2.9)

We conclude that invariance of the lattice action (2.1) under the chiral transformations (2.8) would
require

γ̂T
5 = Ĉγ5Ĉ

−1 , (2.10)

which mapsγ̂5 carrying the winding numbern[P̂] to γ5 carrying the winding numbern[P]. Note
that using differentγ5’s in the definition ofΓ5 still leads to the same conclusion (2.10). In order
to elucidate this obstruction we use Ginsparg-Wilson fermions as an example. There the relation
(2.10) reads

(1−aDT)γT
5 = Ĉγ5Ĉ

−1 , (2.11)

with a possible solution

Ĉ = C(1− 1
2aD) . (2.12)

TheĈ in (2.12) has zeros at the doublers, and the relative windingnumber is carried by these zeros.
Inserting a latticeĈ in (2.12) into the action (2.1) we encounter zeros or singularities of the operator
Ĉ−1D at the positions of the doublers. This brings back the doubling problem. Consequently we
have to useindependentMajorana fieldsψ , ψ ′ with different chiral transformation properties for
the construction of Majorana actions.
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3. Construction of Majorana actions on the lattice

Now we are in the position to construct chirally coupled Majorana fermions on the lattice. In
line with the arguments of the last section we introduce a copy of the original symplectic Majo-
rana fermion,ψ ′. Then chiral invariance is easily arranged for with appropriate, different, chiral
transformations forψ andψ ′ respectively. Furthermore we have to ensure that our path integral
results in Pfaffians of the Dirac operator which signals Majorana fermions. The corresponding
lattice action reads

S[ψ ,ψ ′] = ∑
x,y∈Λ

ψ ′T(x)C D(x−y)ψ(y) , (3.1)

with the Yukawa term

SY[ψ ,ψ ′,φ ] = g ∑
x,y∈Λ

(

ψ ′T
C P φ†(1−P̂)ψ + ψ ′T

C (1−P)φP̂ψ
)

(3.2)

whereP = (1+Γ5)/2, P̂ = (1+ Γ̂5)/2. We emphasise that in contradisctinction to the continuum
theory in general we havePφ† 6= φ†(1−P) andP̂φ† 6= φ†(1−P̂) as the projection operators
P,P̂ depend on the Dirac operator. The actionS+SY is invariant under the chiral transformations

ψ → (1+ iεΓ̂5)ψ , ψ ′ → (1+ iεΓ5)ψ ′ , φ → (1−2iε)φ . (3.3)

The actionS+SY reduces to the continuum action in the continuum limit, but with a doubling of the
field content. This doubling can be removed by appropriate prefactors in the action, or by simply
taking roots of the generating functionalZ. However, it is left to prove the Pfaffian nature of the
path integral. Since we have doubled the degrees of freedom we could have constructed a Dirac
fermion out of two Majorana fermions. To that end we concentrate on the path integral of the pure
Majorana action [22, 23] including a mass term for dealing with the zero modes. The generating
functional is given by

Z =
∫

∏
x

dψ1dψ∗
1dψ ′

1dψ ′
1
∗e−S[ψ ,ψ ′] , (3.4)

with the action

S[ψ ,ψ ′] = ∑
x,y∈Λ

ψ ′T(x)C D(x−y)ψ(y)− im ∑
x,y∈Λ

ψ ′T(x)C

(

0 1
1 0

)

Γ5ψ(y)

= −∑
n

[

(λn + im)(b′ncn +bnc′n)+c.c.
]

, (3.5)

where we have used the following expansion in terms of eigenfunctions ofγ5D:

ψ1 = ∑
n

(cnϕn +bnφn) , with γ5Dϕn = λnϕn , (3.6)

andφn = γ5C−1ϕ∗
n . The above relations allow us to show that

Z = m2(n++n−)

(

4
a2 +m2

)N++N−

∏
0<λn 6=2/a

(λ 2
n +m2)4 . (3.7)
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with the massless limitZ =
(

4
a2

)N++N− ∏0<λn 6=2/aλ 8
n . In conclusion we find that

Z = PF(CD)2 PF(C∗D∗)2 . (3.8)

We close with a short summary. We have shown that the construction of a theory with chirally
coupled Majorana fermions on the lattice has to deal with theusual topological obstructions well-
known from the construction of chiral fermions, even thoughthe total chirality is even. The ob-
struction is related to the use of chiral projection operators in the Yukawa term. This problem is
resolved by doubling the degrees of freedom, and the Pfaffiannature of the path integral is proven.
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