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1. Introduction

Although the Hamiltonian is not Lorentz invariant, the light cone Hamiltonian [1ofgrs
the advantage of being boost invariant and has - naively interpretddvia vacuum. On the
other hand, one would be surprised if QCD looses its non-perturbagiseunm structure in the
light cone limit. Probably much of the complicated vacuum structure of QCD isehidial the
constraint equations appearing in light cone QCD. Remarkable prolgasskeen made in light
cone QCD with a color dielectric lattice theory as a starting point [3, 4]. Thisageh is based
on “fat” links which arise from averaging gluon configurations [5]. Witkstmethod the spectrum
of glue balls and the pion light cone wave function have been calculatedJd]the light cone
one is prevented from approaching the continuum limit, since the effectinaltbnian for the link
matricesM € GL(N) approachindJ € SU(N) is not known. This is the reason why we propose to
formulate QCD near the light cone usiBY(N) link variables. Near light cone time plays a similar
role as ordinary Minkowski time, therefore we can follow the conventiomathod of the transfer
matrix. The transversal fields are increased in magnitude due to the btwo#tiearvicinity of the
light cone whereas the longitudinal fields remain unchanged. Consteaiatiens arise in the light
cone Hamiltonian framework which enforce the “equality” of the transvelsemo-electric and
chromo-magpnetic fields? = F2,. The lattice Hamiltonian density depends on an effective constant
which represents the produgt= £n of the asymmetry parametér=a_/a, and the near light
cone parameten. If one chooseg) = 1 and lets€ — 0 one obtains a deformed system which is
squeezed in the spatial direction, if one useg = 1 and letsn — 0 one obtains the light cone
limit. This equivalence has been found by Verlinde and Verlinde [6] aredédia [7]. These authors
have proposed to implement such asymmetric lattices in order to study higly enattering. This
has motivated us to proceed further in this way. In the work of Balitsky fig]@pproaches the light
cone from time-like distances which is close to scattering experiments. Homevapproach the
light cone from space-like distances. The asymmetric lattice Hamiltonian itselt issable for
Monte Carlo methods since the electric field strengths i.e. the momenta appedy.liBegause
of the translational invariance of the vacuum we can add a tgmfR. to cancel the unwanted
terms. Naively this amounts to returning to an effective lattice Hamiltonian whictojsoptional
to the energy in ordinary Minkowski coordinates. This is a reasonalgleedure to search the
ground state in the vacuum channel. Applications of light cone coordimafeste temperature
field theory have followed the same route [9].

2. The QCD Hamiltonian near thelight cone

We introduce near light cone (nic) coordinates, first proposed By [10

-3l 1)
X~ = \2 X0 —x3] . (2.1)

The transversal coordinate$ andx? remain unchanged. The near light cone paramegteray
be interpreted as parameterizing a Lorentz boost into a frame which is moitimgelocity 3 =
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(1-n?/2)/(1+ n?/2) along the longitudinal direction relative to the laboratory frame. Then, the
nlc energyp. and longitudinal momenturp_ expressed in terms of the laboratory enefgy and
longitudinal momentunp, are given by

1
Py = 0 (Ejab — p|3ab)
p- = NPy (2.2)

The second relation in eqn. (2.2) shows that large longitudinal monp%gthecome accessible by
a nlc lattice with a cut-ofp_ 0 1/a .
The definition of nlc coordinates egn. (2.1) induces the following metric:

00 0 1 n?2 0 01
0-10 0 0-100
_ w 2
Wv=100-10 [¢ 0 0 -10 (2:3)
10 0 —n? 1.0 00

with u,v =+,1,2, —,detg = 1. This defines the scalar product
XY = XY +xXTYT =0y =%y,
= X_Yi XY Ny — KUY (2.4)

Note, that the metric has off-diagonal terms which implies that there are termsgnedmporal
and longitudinal spatial coordinates in the scalar product. This yieldsnadbthe pure gluonic
Lagrange density egn. (2.5) which has severe consequencesuforaioal treatment

n? 1
v z[ Fa pa z (kapfk+2ijka> —2Ff‘2Ff2] | 25)

The Lagrange density is linear in one of the temporal field strengths, ndffighf,. Therefore,
a standard Monte Carlo sampling of the Euclidean path integral does nfevarlc coordinates
and we rather use a Hamiltonian formulation.

The energy momentum tensor in its most general form is given by

0%

v _ G- 1% MV
Z(S(dﬂr)a o g7 . (2.6)

It defines the Hamiltonian density” = T*_ and the longitudinal momentum density_ = T"_
as

1 2
=5 nin‘i+Ff2Ff‘2+z (ME—F3)

a
2
P =TP0.A*+ 5 NEAZ. 2.7)
=1

This form of the local integrand for the generat@r_ of longitudinal translations is not manifestly
gauge invariant. However, if one uses Gauss’ law and the definition dieldestrength tensor one
can rewriteZZ_ in a symmetrized form

P = (MEF3+F3ng) . (2.8)

I\J\H
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In order to solve the Hamiltonian we are interested in translation-invarians stéiieh are eigen-
states of the longitudinal momentum operator, i.e. with eigenvalue equal kevacuum, with
light cone momentun®_ = 0, we can add1/n?) P_ to define an effective Hamiltonian density
%+ ¢ Which is only quadratic in momenta:

1
Tots = t%”—i-?@,

1 e 1
Y lnana +FRFL+ Y o5 (MRNg+ Ff‘kFi’k)] : (2:9)
5 K=1

In a forthcoming paper we show how to derive [11] the effective latticenittanian with the
coupling constam = 4/g* using the transfer matrix:

Aottt = —— i}z{ zna 2 42 )\Tr[]l Re(ulz(X))]
vy ;,712 [I‘Iﬁ‘(xf)er)\ <Tr[‘;"" |m(uk®)}>2] . (2.10)

For ij = 1 this effective Hamiltonian is very similar to the traditional Hamiltonian used in equal
time lattice theory. It differs only in the potential energy terms forlthg plagquettes. Instead of
the usual Tfl — Re(U_y)] term resembling the field strength squared in the naive continuum limit,
the nic Hamiltonian has the forfTr[o?/2 Im(U_)])? which corresponds to the plaquette in the
adjoint representation and which yields an additiaf@) symmetry in comparison with the full
lattice Hamiltonian [11]. The light cone limfy — 0 enhances the importance of transverse elec-
tric and magnetic fields without generating unwanted linear terms in the momerdaedihiting
vacuum solution should be a plausible extrapolation of the vacuum soluti@Q bf

3. Variational optimization of the ground state wave functional

We analytically solve the effective lattice Hamiltonian for the ground state wawetibnal
both in the strong and weak coupling limit [11]. Both solutions can be desthlyea product
of single plaquette wave functionals fgrsufficiently close to one. In order to cover the whole
coupling range, we make a variational ansatz of the ground state wastefhuad which is given by
a product of single plaguette wave functionals with two variational parasetand é and with
the normalization constant N

Wo(p,d) = N |;| exp{kipTr [Re(U,k(X’))} +0Tr [Re(Ulz(X)) ]} :

(3.1)

With this normalized wave function we optimize the energy expectation \&lye &) of the ef-
fective Hamiltonian for fixed values of the couplingand the near light cone parameigr

In fig. (1) and fig. (2), we present the variationally optimized wave fumeiigarameters
po and & rescaled by a factor/A/A such that they approach a constant in the asymptotic weak
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Figure 1: Optimal wave functional parametgp(A,f}) as a function ofA obtained from the simulation

on aNf x N_ = 16° lattice for three different values @f2. The red shaded area corresponds to the phase
transition region for all values @f2. The dotted lines show the predicted analytical strong kogjpehavior.

The arrows indicate the expected asymptotic behavior fakweupling which is proportional t¢/A, i.e. a
constant independent afin the plot. The solid lines show the actual analytic paramzations in the weak
coupling regime (c. f. egn. (3.3)).

coupling region, i.eA — o, The statistical uncertainty on the variational parameters is typically
5%. It becomes larger in the region where the Hamiltonian with(tHe-plaquette in the adjoint
representation induces a phase transition related ta(®esymmetry. This region is indicated by
the red shaded area in the figures. In principle only couplings in the wegKing region above
A =17 are physically meaningful where the artific&2) symmetry in eqn. (2.10) is spontaneously
broken.

The discussed analytical strong and weak coupling solutions [11] yiefditbering estimates
for pp anddy in these limits

40 for A <<1
Po = VA ¥ (0)  for A >>1
& — A Ijz for A <<1
VA 12y (0) for A >>1

i (0) — 0“%38, for i — 0. (3.2)

The variationally determined parameters are in good agreement with the apadytictions in the
strong coupling regime which are represented by the dotted lines in figndIfjga (2). However,
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Figure 2: Optimal wave functional parametégy(A,f]) as a function ofA obtained from the simulation

on aNf x N_ = 16° lattice for three different values @f2. The red shaded area corresponds to the phase
transition region for all values @f2. The dotted lines show the predicted analytical strong kogjpehavior.

The arrows indicate the expected asymptotic behavior fakweupling which is proportional t¢/A, i.e. a
constant independent afin the plot. The solid lines show the actual analytic paramzations in the weak
coupling regime (c. f. egn. (3.3)).

in the weak coupling regime the optimal parameters differ from their analystiahates eqn. (3.2)
which are indicated by the arrows in the plots. Both analytic predictions disagjth the optimized
values stronger for decreasing valuesjofThis is natural, since the light cone limijt— 0 builds
up correlations among plaquettes separated along the longitudinal direttiprirhe parameters
optimizing our product of single plaguette wave functionals can only effegtidescribe these
correlations.

In the physical relevant coupling region beyohd= 7, it is possible to fit the variationally
optimized wave functional parameters to the following parameterization

1) = VA %) fo(A,n)

i=p,5. (3.3)
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A good fit of the parameters, ..., cs; minimizing x2 in the range\ € [10,95) andfj € [0.15,1] is
possible and yields the coefficients tabulated in tab. (1). The result oftihg firocedure eqn. (3.3)

i | Coj | Cuj C2; Ca;i C4) Cs,i
p|090|-1.74| 0.72 | 8.12 | -0.40| -0.27
0|095| 093 |-1.21| -6.44| -0.83| 0.64

Table 1: Coefficients of eqn. (3.3) obtained from least square mizatnon.

is shown by the solid lines in fig. (1) and fig. (2). Having a parameterizatidheoground state
wave functional in dependence of the nic paramgtat hand, we plan to extrapolate to the light
cone and finally calculate hadronic cross sections by simulating how a dplaednoving near
the light cone hits a neutral hadron localizedkat= 0 [12]. The color dipole can be represented
by a longitudinal-transversal Wilson loop elongatedkindirection and the simplified target by
a transverse plaquette. Varying the impact parameter one can samplertiatioor function of
the two gauge-invariant objects and thereby obtain the profile functionec&ssary prerequisite
of such a calculation for different velocities of the dipole is that the latticestzon in transverse
direction stays constant for differefjtvalues, in order to have a reliable transverse length scale.
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