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1. Introduction

The study of QFTs in which the ground state shows a sensitivity to the number of fermion fla-
vors N f is intrinsically interesting. According to approximate solutions of continuum Schwinger-
Dyson equations (SDEs), QED3 displays this phenomenon. It is believed to be confining and
exhibit features such as dynamical mass generation when the number of fermion flavors N f is
smaller than a critical value N f c [1, 2, 3, 4, 5, 6, 7]. Apparently, for N f > N f c, the attactive in-
teraction between a fermion and an antifermion due to photon exchange is overwhelmed by the
fermion screening of the theory’s electric charge. Furthermore, over the past few years QED3 has
attracted a lot of attention, because of potential applications to models of high Tc superconductivity
[8, 9, 6, 10, 11] It is also an interesting and challenging model field theory which is being seen as
an ideal laboratory to study more complicated gauge field theories.

Initial studies based on SDEs using the photon propagator derived from the leading order 1/N f

expansion, where N f is the number of fermion flavors, suggested that for N f less than N f c ' 3.2
chiral symmetry is broken [1]. The model in the limit N f → N f c is supposed to undergo an infinite-
order phase transition [2]. Other studies taking non-trivial vertex corrections into account predicted
chiral symmetry breaking for arbitrary N f [3]. Studies which treat the vertex consistently in both
numerator and denominator of the SDEs have found N f c < ∞, with a value either in agreement with
the original study [4], or slightly higher N f c ' 4.3 [5]. An argument based on a thermodynamic
inequality predicted N f c ≤

3
2 [12], a result that was later on challenged in [11]. A gauge invariant

determination of N f c based on the divergence of the chiral susceptibility gives N f c ≈ 2.16 [6].
Recent progress in the direction of gauge covariant solutions for the propagators of QED3 showed
that in the Landau gauge a chiral phase transition exists at N f c ≈ 4 [7]. Furthermore, a perturbative
analysis of RG flow equations in the large-N f limit predicts N f c ≈ 6 [13].

There have also been numerical attempts to resolve the issue via lattice simulations of QED3.
Once again, opinions have divided on whether N f c is finite [14, 15], or whether chiral symmetry
is broken for all N f [16]. A numerical study of the quenched (N f = 0) case has shown that chiral
symmetry is broken [17]. More recent numerical results showed that chiral symmetry is also broken
for N f = 1, whereas N f = 2 appeared chirally symmetric with an upper bound of 10−4 on the
dimensionless condensate [18]. The principal obstruction to a definitive answer has been large
finite volume effects resulting from the presence of a massless photon in the spectrum, which
prevent a reliable extrapolation to the thermodynamic limit. Recent lattice simulations of the three-
dimensional Thirring model, which may have the same universal properties as QED3, predicted
N f c = 6.6(1) [19]. In this paper we present a study of the QED3 Equation of State based on
preliminary results extracted from lattice simulations on large lattices (up to 803).

2. The Model

We are considering the four-component formulation of QED3 where the Dirac algebra is
represented by the 4 × 4 matrices γ0, γ1 and γ2. This formulation preserves parity and gives
each spinor a global U(2) symmetry generated by 1, γ3,γ5 and iγ3γ5; the full symmetry is then
U(2N f ). If the fermions acquire dynamical mass the U(2N f ) symmetry is broken spontaneously to
U(N f )×U(N f ) and 2N2

f Goldstone bosons appear in the particle spectrum.
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The action of the lattice model we study is

S =
β
2 ∑

x,µ<ν
Θµν(x)Θµν (x)+

N

∑
i=1

∑
x,x′

χ̄i(x)M(x,x′)χi(x
′) (2.1)

Θµν(x) ≡ θxµ +θx+µ̂,ν −θx+ν̂,µ −θxν

M(x,x′) ≡ mδx,x′ +
1
2 ∑

µ
ηµ(x)[δx′ ,x+µ̂Uxµ −δx′,x−µ̂U†

x−µ̂,µ ].

This describes interactions between N flavors of Grassmann-valued staggered fermion fields χ , χ̄
defined on the sites x of a three-dimensional cubic lattice, and real photon fields θxµ defined on the
link between nearest neighbour sites x, x+ µ̂ . Since Θ2 is unbounded from above, eq.(2.1) defines a
non-compact formulation of QED; note however that to ensure local gauge invariance the fermion-
photon interaction is encoded via the compact connection Uxµ ≡ exp(iθxµ ), with Ux+µ̂,−µ = U∗

xµ .
In the fermion kinetic matrix M the Kawamoto-Smit phases

ηµ(x) = (−1)x1+···+xµ−1 (2.2)

are designed to ensure relativistic covariance in the continuum limit, and m is the bare fermion
mass.

If the physical lattice spacing is denoted a, then in the continuum limit a∂ → 0, eq.(2.1) can
be shown to be equivalent up to terms of O(a2) to

S =
N f

∑
j=1

ψ̄ j[γµ(∂µ + igAµ)+m]ψ j +
1
4

FµνFµν (2.3)

ie. to continuum QED in 2+1 euclidean dimensions, with ψ , ψ̄ describing N f flavors of four-
component Dirac spinor acted on by 4×4 matrices γµ , and N f ≡ 2N. The continuum photon field
is related to the lattice field via θxµ = agAµ(x), with dimensional coupling strength g given by
g2 = (aβ )−1, and the field strength Fµν = ∂µAν − ∂µAν . The continuum limit is thus taken when
the dimensionless inverse coupling β → ∞.

As reviewed in [18], for a > 0 in the chiral limit the lattice action (2.1) retains only a remnant
of the U(2N f ) global symmetry of (2.3) under global chiral/flavor rotations, namely a U(N)⊗U(N)

symmetry which is broken to U(N) either explicitly by the bare mass m 6= 0, or spontaneously by
a chiral condensate 〈χ̄χ〉 6= 0, in which case the spectrum contains N2 exact Goldstone modes.
It is expected that the symmetry breaking pattern U(2N f ) → U(N f )⊗U(N f ) is restored in the
continuum limit, implying the existence of an additional 7N 2 approximate Goldstone modes whose
masses vanish as β → ∞.

3. Numerical Simulations

In this section we present results from numerical simulations performed using the standard
Hybrid Molecular Dynamics (HMD) R-algorithm. In order to ensure that the O(N 2dt2) system-
atic errors (dt is the time step of the HMD trajectory) are negligible, we performed two sets of
simulations one with dt = 0.010 and another with dt = 0.005 on 803 lattices with m = 0.005 and
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dt=0.005
dt=0.010
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Figure 1: Chiral condensate versus N f from simulations with dt = 0.010 and dt = 0.005; β = 0.90, m =

0.005, and L = 80.

β = 0.90. As shown in Fig. 1 the values of the chiral condensate from the two sets of simula-
tions with N f = 0.5, ...,3.0 agree within statistical error, implying that the systematic effects are
negligible.

Next we present results from simulations with N f = 1.5 and N f = 2.0 (Figs. 2 and 3). More
specifically, we study the behavior of the dimensionless chiral condensate β 2〈ψ̄ψ〉 versus the di-
mensionless fermion bare mass βm on different lattice sizes. In the N f = 1.5 case the finite size
discrepancy between the L = 54 and L = 80 results is ∼ 7%, implying that the finite size effects for
L = 80 are small. In the N f = 2.0 case the discrepancy is ∼ 1%, implying that in this case the values
of the condensate extracted from the 803 simulations should be even closer to the thermodynamic
limit values.

For N f = 2, we fitted the 543 data to

β 2〈ψ̄ψ〉 = a0 +a1 · (βm)+a2 · (βm)2. (3.1)

The extracted value of a0 = −8×10−8 with a statistical error 5×10−7 and fit quality χ2/DOF =

0.9 is consistent with zero with relatively high accuracy. For N f = 1.5, we fitted the 803 data to
(3.1) and got a0 = −2× 10−6 with a statistical error 10−6 and fit quality χ2/DOF = 4.1. This
result is also very close to zero although the fit quality is lower than in the N f = 2.0 case. As we
will se below the low fit quality could be attributed to the fact that N f = 1.5 may be close to the
chiral phase transition.

We also checked the effects of lattice discretization on the values of the chiral condensate by
comparing data extracted from simulations with β = 0.90 and β = 1.20 for N f = 0.5, ...,2.0. We
achieved this by fixing for the two sets of simulations the physical volume (L/β )3 and the physical
mass βm. The results presented in Fig.4 show that the lattice discretization effects at β = 0.90 are
small for N f > 0.5, whereas for N f = 0.5 there is an ∼ 8% discrepancy between the values of the
condensate at β = 0.90 and β = 1.20.
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Figure 2: Dimensionless condensate versus dimensionless bare mass for N f = 1.5.

54
3

80
3

βm

β
2
〈Ψ̄

Ψ
〉

0.010.0010.00011e-05

0.01

0.001

0.0001

1e-05

Figure 3: Dimensionless condensate versus dimensionless bare mass for N f = 2.0.

Next, we fitted the data for the dimensionless condensate at different values of N f and m, and
lattice sizes 543 and 803 to a renormalization group inspired equation of state that includes a finite
size scaling term [20]:

m = A((β −βc)+CL− 1
ν )(β 2〈ψ̄ψ〉)p +B(β 2〈ψ̄ψ〉)δ , (3.2)

where p = δ − 1/βm. The results extracted from this fit are: A = 0.0477(38),B = 0.79(2),C =

10.7(8),N f c = 1.52(6),δ = 1.177(7), p = 0.73(2). The data and the fitting functions are shown in
Fig. 5. These results are consistent with a relatively smooth second order phase transition.

4. Summary

We studied numerically the equation of state of non-compact QED3. The extrapolations to the
chiral limit on lattices with small finite size effects show with high accuracy that the N f = 2.0 theory
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723, m = 0.00375, β = 1.20
543, m = 0.005, β = 0.90
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Figure 4: Dimensionless condensate versus N f at β = 0.90 and 1.20 with constant L/β and βm.
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Figure 5: Fits of β 2〈Ψ̄Ψ〉 vs. N f to a finite volume scaling form of the Equation of State.

is chirally symmetric with an accuracy of O(10−7). The preliminary results extracted from fits to
a finite volume Equation of State are consistent with a second order phase transition scenario and
N f c ≈ 1.5. However, in order to reach a decisive conclusion on the value of N f c and the properties
of the chiral phase transition we have to extend our simulations to larger lattices, generate better
statistics, and include more data points close to the continuum limit.
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