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continuum theory cannot be realized from the BRST cohomology on the lattice. From this result,

we obtain the possible implication that theN = (4,4) CKKU model cannot realize the target

continuum theory when the non-perturbative effects are taken into account.
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1. Introduction

Recently, several lattice gauge theories which preserve partial supersymmetry on the lattice are
proposed [1, 2, 3, 4]. The main purpose in these models is to solve the fine-tuning problem. The
fine-tuning problem is the difficulty to recover the target continuum theory including the quantum
effects. To construct such formulations, they utilize the topological twisting. Topological twisting
is picking up a set of supersymmetry generators which does not include the infinitesimal translation
in its algebra. In this way, partial supersymmetry can be preserved on the lattice which breaks the
translational invariance.

It is very important to investigate whether the models really solve the fine-tuning problem or
not. To do it, we should examine whether they recover the target continuum theories or not. In
the perturbative level, such investigations have been done well [5]. But, on the other hand, there
is not a sufficient study which takes the non-perturbative effects into consideration. Then we will
non-perturbatively investigate whether the models really solve the fine-tuning problem or not.

2. The non-perturbative criteria

Note that the models can be regarded as the lattice regularizations of the topological field
theory (TFT). This is because preserved supercharges on the lattice are equivalent to the BRST
charge in the TFT obtained by the topological twisting. The target continuum theories of these lat-
tice models are extended supersymmetric gauge theories including the TFT as a special subsector.
Therefore the topological field theory in the continuum theory must be recovered in the continuum
limits if the lattice models really recover the target continuum theories.

In this work, among the several properties of the TFT, we investigate the behavior of the
BRST cohomology [6]. The BRST cohomology is defined with the vacuum expectation value
〈O〉 of an operatorO vanishing under the operation of the BRST chargeQ (BRST closed) but
not BRST exact. The BRST exact is a quantity written by theQ-operation of a gauge invariant
quantity. We can obtain the〈O〉 exactly by the semi-classical approximation since the quantity
〈O〉 is independent of the gauge coupling due to the property of the Hilbert space of the TFT.
Namely,〈O〉 can be regarded as one of the non-perturbative quantities. Therefore, by examining
whether the BRST cohomology in the continuum theory can be recovered at the continuum limit
or not, we can non-perturbatively investigate whether a lattice model can recover the continuum
theory or not.

In this paper, we consider whetherN = (4,4) two dimensional CKKU model [1] really have
the desired continuum limit or not. To do it, we study the BRST cohomology on the lattice. Then
we compare the BRST cohomology on the lattice with the BRST cohomology in the continuum
theory, and we consider whether the BRST cohomologies in the target theory are really recovered
in the continuum limit. From this study, we consider whether the target theory is recovered in the
continuum limit or not.

3. The BRST cohomology in the target continuum theory.

To make a comparison between the BRST cohomologies in the target continuum theory and
the ones on the lattice, we explain the BRST cohomology in the target continuum theory. The
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action of the continuum theory is written by the BRST exact form as described at the eq. (5.1) in
the paper [7]. The BRST transformation laws of the continuum theory are given at the eq. (5.2) in
the paper [7]. Among the transformation laws in the eq. (5.2), we pick up following transformation
laws

Qφ = 0,

Qvµ = ψµ ,

Qψµ = iDµφ , (3.1)

here, since we use these to create the BRST cohomologies in the continuum theory. In eq. (3.1), vµ

denotes the gauge field and theψµ denotes the BRST partner of the gauge field.
In the continuum theory, at least, the BRST cohomologies are composed byφ , vµ andψµ . To

compose the BRST cohomologies by these fields, we can utilize the ‘descent relation’ proposed by
Witten [8]. Let us prepare the differential 0-form, 1-form and 2-form operator set

W0 = Trφ2,

W1 = Trφψ ,

W2 = Trφ(dv+v∧v)+ψ ∧ψ, (3.2)

whereψ andv are differential 1-form denoted byψ = ψµdxµ andv = vµdxµ . Hered denotes the
exterior derivative. The set satisfies the following the ‘descent relation’

QW0 = 0, (3.3)

QWk = dWk−1 (k = 1,2). (3.4)

Utilizing this property, the BRST closed operatorsOk can be constructed by the integral ofWk

(k = 1,2) over thek dimensional homology cycleγk,

Ok ≡
∫

γk

Wk. (3.5)

We can confirm that these operators are BRST closed by the explicit calculation,

QOk = Q
∫

γk

Wk =
∫

γk

dWk−1 =
∫

∂γk

Wk−1 = 0, (3.6)

since any homology cycle does not have boundaries. Also theW0 is the BRST closed operator due
to the transformation lawQφ = 0.

TheseOk are BRST cohomologies although they areformallywritten by the BRST exact form,

O1 =
∫

QTrφv, O2 =
∫

QTrψ ∧v. (3.7)

The operatorsTrφv andTrψ ∧ v are not gauge invariant. The BRST exact quantities are defined
by theQ-operation of gauge invariant quantities. Therefore theseO1 andO2 are not BRST exact
but BRST closed quantities, namely these are BRST cohomologies. Here, please note that the
Q-operation changes the gauge transformation laws as

vµ → g−1vµg+g−1∂µg, (3.8)

Qvµ = ψµ → g−1ψµg. (3.9)

This property plays an important role to create the gauge invariant BRST cohomology from the
gauge variant quantitiesTrφv andTrψ ∧v.
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4. The BRST cohomology on the two dimensionalN = (4,4) CKKU lattice model.

Next, let us consider the BRST cohomology on the two dimensionalN = (4,4) CKKU lattice
model without moduli fixing mass term. The action of the lattice model is written at eq. (3.14) in
[1], and the preserved supercharges and their transformation laws are given by eqs. (3.2),(3.3),(3.5)
and (3.6) in [1]. The action can be written by the equivalent BRST exact form described in
eq. (2.14),(2.15) in [7], where the BRST charge is given by the the linear combination of the
original supercharges as described at eq. (2.11) in [7]. In fact, also the BRST exact action eq. (3.6)
in [6] is completely equivalent to eq. (2.11) in [7]. One can check the equivalence by identifying
the fields as follows

Xn ⇔
√

2z1,n, λn ⇔
√

2ψ1,n, X†
n ⇔

√
2z1,n, λ †

n ⇔−
√

2ξ2,n

Yn ⇔
√

2z2,n, λ̃n ⇔
√

2ψ2,n Y†
n ⇔

√
2z2,n, λ̃ †

n ⇔
√

2ξ1,n,

Φ̄n ⇔
√

2z3,n, ηn ⇔
√

2(ψ3,n −λn), χC
n ⇔

√
2χn, χC†

n ⇔
√

2ξ3,n,

HC
n ⇔

√
2G̃n, HC†

n ⇔
√

2G̃n, χR
n ⇔−i

√
2(ψ3,n +λn), HR

n ⇔−d̃n

Φn ⇔
√

2z3,n.

(4.1)

In this paper, we use the BRST exact form eq. (3.7) in [6] of the CKKU lattice action,

S = QΞ

Ξ = Tr

[
1
4

ηn[Φn,Φ̄n]+~χn · (~Hn − i~En)

+
1
2

{
λn(X†

n Φ̄n − Φ̄n+iX
†
n )+λ †

n−i(Xn−iΦ̄n − Φ̄n−iXn−i)

+λ̃n(Y†
n Φ̄n − Φ̄n+jY

†
n )+ λ̃ †

n−j (Yn−j Φ̄n − Φ̄n−jYn−j )
}]

, (4.2)

E R
n = −(XnX†

n −X†
n−iXn−i +YnY†

n −Y†
n−jYn−j ),

E C
n = 2i(XnYn+i −YnXn+j ).

In the tree level, the continuum limit of the eq. (3.7) in [6] becomes the topological field theory
action eq. (3.11) in [6] (or eq. (5.1) in [7]), which is equivalent to the two dimensionalN = (4,4)
super Yang-Mills theory. In the continuum limit, the lattice field variableΦ becomes the fieldφ
in the continuum theory, and the gauge fieldsvµ come from the bosonic link fieldsX,X†,Y,Y†.
The BRST partners of the gauge fieldsψµ come from the fermionic link fields,λ ,λ †, λ̃ , λ̃ †. For
later use, we distinguish the degree of freedom as the two part{Φn} and ~An. Here{Φn} is the set
composed only by the fieldΦ, and the set~An is composed by the other fields.

The BRST transformation laws are given in eq. (3.7) in [6],

QXn = λn, Qλn = ΦnXn −XnΦn+i ,

QYn = λ̃n, Qλ̃n = ΦnYn −YnΦn+j ,

QHR
n = [Φn,χR

n ], QχR
n = HR

n ,

QHC
n = ΦnχC

n −χC
n Φn+i+j , QχC

n = HC
n ,

QΦ̄n = ηn, Qηn = [Φn,Φ̄n],
QΦn = 0.

(4.3)
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Note that this is a homogeneous transformation of~An. Therefore, the transformation can be written
as the tangent vector

Q = ∑
n

[
λn

∂
∂Xn

+λ †
n

∂
∂X†

n
+ λ̃n

∂
∂Yn

+ λ̃ †
n

∂
∂Y†

n

+[Φn,χR
n ]

∂
∂HR

n
+(ΦnχC

n −χC
n Φn+i+j )

∂
∂HC

n
+(ΦnχC†

n −χC†
n Φn−i−j )

∂
∂HC†

n
+ηn

∂
∂ Φ̄n

+(ΦnXn −XnΦn+i)
∂

∂λn
+(ΦnX†

n −X†
n Φn−i)

∂
∂λ †

n

+(ΦnYn −YnΦn+j )
∂

∂ λ̃n
+(ΦnY†

n −Y†
n Φn−j )

∂
∂ λ̃ †

n

+~Hn ·
∂

∂~χn
+[Φn,Φ̄n]

∂
∂ηn

]
. (4.4)

In addition to this charges, we introduce another fermionic operator written by the tangent vector

Q̃ = ∑
n

Xn
∂

∂λn
+X†

n
∂

∂λ †
n

+Yn
∂

∂ λ̃n
+Y†

n
∂

∂ λ̃ †
n

+ Φ̄n
∂

∂ηn
+~χn ·

∂
∂ ~Hn

. (4.5)

Then, the anti-commutation relation between these two charges becomes the number operatorN̂A ,
which count the number of fields in the set~An, as follows

{Q,Q̃} = ∑
n

Xn
∂

∂Xn
+X†

n
∂

∂X†
n

+Yn
∂

∂Yn
+Y†

n
∂

∂Y†
n

+ Φ̄n
∂

∂ Φ̄n
+ ~Hn ·

∂
∂ ~Hn

+λn
∂

∂λn
+λ †

n
∂

∂λ †
n

+ λ̃n
∂

∂ λ̃n
+ λ̃ †

n
∂

∂ λ̃ †
n

+ηn
∂

∂ηn
+~χn ·

∂
∂~χn

= N̂A . (4.6)

Please note that any function of the field variablesh can be written in terms of a sum of eigenfunc-
tion of N̂A , namely

h =
∞

∑
nA =0

hnA , N̂A hnA = nA hnA , nA ∈ {0}∪N, (4.7)

since any term in the functionh has definite number of fields in the set~An. In addition to this ho-
mogeneous property of the BRST chargeQ, thisQ does not change the gauge transformation law
opposite to the continuum theory case. One can confirm it by checking that each field variable re-
sides on the same link or site as its BRST partner respectively. Please look at BRST transformation
laws eq. (3.7) in [6] and Fig. 1 in [6].

From these properties of BRST charges, we can see that BRST cohomology must be com-
posed only byΦ on the lattice. We will show it. First, let us consider the BRST closed function
hc satisfyingQhc = 0. From the property eq. (4.7), alsohc can be decomposed by the sum of
eigenfunctions of the operatorN̂A ,

hc =
∞

∑
nA =0

hc,nA . (4.8)
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Since the BRST operator is homogeneous transformation which does not change the number of
fields in ~An, the BRST operatorQ commutes with the number operatorN̂A , namely

[Q, N̂A ] = 0. (4.9)

Then, ifQhc = 0, each eigenfunctionhc,nA must be BRST closed,

Qhc = 0⇔ Qhc,nA = 0, (n∀A ∈ {0}∪N). (4.10)

The BRST closed eigenfunctionshc,nA with non-zero eigenvaluenA 6= 0 can be formally written
as the BRST exact form since

hc,nA = n−1
A N̂A hc,nA = n−1

A {Q,Q̃}hc,nA = n−1
A QQ̃hc,nA . (4.11)

In this equation,Q̃hc,nA must be gauge invariant if the functionhc,nA is a gauge invariant function,
since theQ-operation does not change the gauge transformation law. Therefore, in the BRST closed
functionhc, BRST closed non-zero eigenfunctionhc,nA must be BRST exact. Finally, we can see
that the only the zero eigenfunctionhc,0, which is the polynomial composed only byΦ, can be the
BRST cohomology among the eigenfunctions. This is the end of proof.

The above situation stands for any lattice spacing. This tells that the BRST cohomology must
be composed only byΦ no matter how the lattice spacing is small, namely even in the continuum
limit. Therefore the BRST cohomology in the target continuum theory, which are composed not
only by φ but also by gauge fieldsvµ and their partnersψµ , cannot be realized from the BRST
cohomology on the lattice. Finally, we obtain the possible implication that theN = (4,4) CKKU
lattice model cannot realize the desired target continuum theory.

4.1 A possible reason why the BRST cohomology cannot be realized on the lattice

Among the BRST cohomologies in the target theory, the quantities composed byvµ andψµ ,
which are 1-form and 2-form operatorsO1 andO2, are defined by the inner product between the
homology cycle and its dual cohomology of the base manifold. Such inner products are topolog-
ical quantities which are invariant under the infinitesimal transformation of the base manifold. It
is generally difficult to construct such topological quantities on the lattice. On the lattice, gauge
symmetry is defined with the gauge parameters which are completely independent of the parame-
ters on the neighbor sites. Such a property of the lattice gauge symmetry admits the singular gauge
transformation which prevents us from the realization of the topological quantities on the lattice.
Therefore we could not obtain the BRST cohomologies which are composed byvµ andψµ .

Inhomogeneous termg−1∂µg in the eq. (3.8) are removed from the gauge transformation law
of the corresponding link gauge fields due to the property of the lattice gauge symmetry. By this
property,Q on the lattice does not change the gauge transformation law. Also it would be the reason
of the impossibility to realize the corresponding BRST cohomology on the lattice.

5. Conclusion and discussion.

We investigate whether the supersymmetric lattice model, which is the two dimensionalN =
(4,4) CKKU supersymmetric lattice model, really recover the target theory or not through the ex-
amining whether the property of the TFT are really recovered in the continuum limit or not. In this
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paper, as the first step, we estimate the situation by the comparison between the BRST cohomology
on the CKKU lattice and the BRST cohomology in theN = (4,4) target continuum theory. By
the investigation, we have understood that the BRST cohomology in the target continuum theory
cannot be realize from the BRST cohomology on the lattice. This implies that there is a possibility
that the CKKU lattice model cannot realize the desired target continuum theory.

Moreover, we consider the reason of the impossibility. The reason of the impossibility would
be that the BRST cohomology is a topological quantity defined by the inner product between the
homology cycle and its dual cohomology. It is generally difficult to construct such a topological
quantity on the lattice since the gauge symmetry on the lattice admits the singular gauge transfor-
mation which prevents us from the realization of the topological quantity on the lattice. From this
observation, we can guess that also other models like [3, 4] might be difficult to recover the desired
target theories. But, from this, we could obtain the valuable strategy to develop the lattice formu-
lation which can easily recover the desired target theory, namely the formulation applicable to the
numerical study. We propose to apply the Admissibility condition [9] etc, which would enables us
to define the topological quantity, to define the BRST cohomology on the lattice and to recover the
desired target theory.
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