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1. Introduction

Eguchi-Kawai (EK) reduced models offer a potentially usafternative to the usual approach
to largeN extrapolations in lattice gauge theory. In four dimensjadnsy are defined as SN Wil-
son lattice gauge theories living on &lattice. In the largeN limit, these models were conjectured
[1] to be equivalent to SUN) Wilson lattice gauge theories living on an infinite lattitieis equiv-
alence is known as EK correspondence. In practice, the ebs#rspace-time degrees of freedom
in EK models allows the simulation of relatively large gaggeups with moderate computational
effort, which alludes to a faster convergence to the plandt.|However, the EK correspondence
doesn’t always hold: in the original EK model [1], i.e. witlenpdic boundary conditions, the
EK correspondence is known to break at weak coupling. In Keredel with twisted boundary
conditions [2], on the other hand, it is generally assumatlttie problems that affect the untwisted
EK model are absent, and consequently that the EK corregpagrcholds for all couplings. In this
talk we summarise the results of our study [3] of the propsrtif some four-dimensional TEK
models, which have strong implications for the validity loé tEK correspondence.

2. The EK model and its vacuum

The action of the four-dimensional EK model [1] is given by:

St (U) =bN i Tr{1-U,u,uful} (2.1)
HAV

1

whereb = is the inverse 't Hooft coupling, and,, € SU(N) are the link variables. The EK

&N
action has a gauge symmetry:
Uy, = VULVT V€ SUN) (2.2)
and also & symmetry:
Uy — z,Uy, 2, € Z (2.3)

The EK correspondence [1] states that B)JWilson lattice gauge theories living on an infinite
lattice should be equivalent to SN EK models in the largé\ limit, in the sense that expectation
values of corresponding operators coincide in that linst,(i0[U, (X)])\y N2 (OUu])ek- This is

a consequence of the fact that the lalj&chwinger-Dyson (SD) equations of the original Wilson
theory and its EK reduced model coincide. More precisely,3B equations have the same form
in both theories, except for contact terms that are spedifioedEK model. These contact terms
consist of expectation values of open lines; they vanisletexan the original Wilson theory (due
to gauge symmetry), but not necessarily in the EK model ¢ésthe gauge symmetry (2.2) is a
similarity transformation of the link variables). Howeyer the EK model the open lines are not
invariant under th&y, symmetry (2.3). So, unless the centre symmetry is spontshebroken,
the expectation values of open lines is zero and the EK quoreence holds nonperturbatively.

In the strong coupling regiméy — 0, the Haar measure dominates the partition function of

the EK model. This measure has a repulsive effect on the egjess of the link variables, which
results in an essentially uniform distribution of eigemes over the unit circlé;consequently,

IRecall that eigenvalues of SNY matrices are pure U(1) phases.
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the traces of link variables (and other open lines) have egpectation value, and hence the EK
correspondence holds in the weak coupling regime.

In the weak coupling regimdy — o, small fluctuations around the absolute minimum of
the EK action (2.1) dominates the partition function. Lt = Q,e " denote a perturbation
(labelled by anti-Hermitian matrices,) of the reduced link variables around an extremm
of the EK action. The stationarity points of the acti@S{, = 0) are SUN) diagonal matrices,
Q, = diag{é’1,...,e%}. The trace of a reduced link variable averaged over theicklssicuum
manifold is obviously zero. However, the second variatibthe EK action around these diagonal
extrema is: .

8%S 0= Y Tri{(QuXQ)i —Xv) — (QuXu Q) —Xy) 12>0 (2.4)
HFEV
When the extremum is a centre eleme@y}, = 7,1 € Z,, we haved?S.,(z,1) = 0, while for
general diagonal matrices we had®S., (Q,) > 0. This means that the elements of the centre,
having lower action, are the true vacua of the quantum EK modiaese vacua break thef|
symmetry spontaneously, and hence the EK correspondeesendbhold in the continuum limit.

3. The TEK model and its vacuum

An elegant way to avoid the spontaneous breaking oZfheymmetry in the EK model is to
introduce twisted boundary conditions in the reducéthttice, as pioneered by Gonzélez-Arroyo
and Okawa [2]. The action of the twisted EK (TEK) model is givsy:

4
Srex(U) = bN ; Tr (1 —z,,U,U,U U)) (3.1)
UF£V

wherez,;,, = &N, andny, = —n,, =L, forall u < v, is the symmetric twist tensor of Gonzalez-
Arroyo and Okawa [2], witlN = L. The EK correspondence states that the JU[EK model
with symmetric twist tensor has the same planar limit as tHéN$ Wilson lattice gauge theory
living in a periodicL* lattice.

In the strong coupling regime, the Haar measure domina&e3HK partition function. This
implies, like in the EK model, that the expectation valuetheftraces of open lines are zero.

In the weak coupling regime, small fluctuations around tlassital minimum of (3.1) domi-
nate the TEK partition function. This classical minimumplm as the twist-eater, is the configu-
rationU, = I, that solves the equaticght" ruryIry =15 itis given, up to gauge rotations (2.2)
andz,, shifts (2.3), by, ~ @"diag{1,éT,...,é T(--D}. Small fluctuations aroundl,, corre-
spond to small fluctuations around these classical eigeesalThe distribution of eigenvalues of
a link variable is therz, -symmetric over the unit circle, and hence its trace is aataally zero.

In sum, small fluctuations around the classical minimum effEK action preserve enough of the
Z% symmetry (namelyZ), for the EK correspondence to hold in the weak couplingmegof the
TEK model (unlike in the untwisted EK model).

It is generally assumed that tfZ symmetry of the TEK model is intact for all couplings.
However, since the arguments used for the weak and strorgicguegimes are distinct, there is
no a priori reason why the centre symmetry should not be brakintermediate couplings.
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Figure 1. Expectation values of the plaquettg,, (top) and traced link variables, T, (bottom) in the
SU(N) TEK models forN = 64 (left) andN = 100 (right).Z,'§l denotes a phase withpreserved,, symme-
tries; Z}") andZ") denote phases that aZf-symmetric due to the randomisation from the Haar measure
(r) or due to fluctuations around the twist-eater vacytiprespectively.

4. Z% symmetry breaking

We performed numerical simulations of the SY[TEK model with symmetric twist for a wide
range of gauge groups, namely 25N < 256. ForN < 81, the TEK model has properties similar
to the ones of the original Wilson theory: it has a strong-firster bulk transition alb ~ 0.36, and
agrees with the strong- and weak-coupling expansions oplémguette (left-top graph in Fig.1).
In sum, the EK correspondence seems to hold without rdaetigtwhich is also suggested by the
fact that the trace of reduced link variables is zero for allplings (left-bottom graph in Fig.1).
However, forN > 100, theZy, symmetry of the TEK model is spontaneously broken at inteliate
couplings; this is manifest by at least one of the link vddalkacquiring a non-zero trace (right-
bottom graph in Fig.1). In hot start simulations, we alsoepbs that once the reduced lattice falls
into aZy-breaking vacuum, it remains there for the whole simulat@ren for very large values
of the coupling b ~ 20). This metastability suggests the existence of staliterma of the TEK
action that do not preserve if§ symmetry.

We also observe that the four independ&gtsymmetries of the TEK model break indepen-
dently in a cascading wayzZg — Z3 — Z& — Z§ — Z3 (Fig.2). These transitions are similar to
the ones observed on a continuum torus by Narayanan and fgeuljg]. However, they are not
the physical transitions of the original Wilson theory, ndtead the transitions associated with
the 1" lattice (where the link variables play the role of Polyakowps). Across each one of these
transition, the eigenvalues of one of the link variabledapsle onto an element &, which con-
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Figure 2: Left: Expectation values of the plaquetts,, (top) and traced link variables,qU , (bottom)
in the SUN) TEK models forN = 144. Right: Eigenvalue distributiong(a), of the link variables in the
differentZ,‘i,—symmetric phases of the SU(144) TEK modeH0,1,2,3).

sequently leads to a non-zero expectation value for itetraibis suggests that the stable relative
extrema of the TEK action that break tA§ symmetry are centre configurations.

The existence of-breaking phases in the TEK model has been confirmed indepégndy
Ishikawa and Okawa [6], and has also been also observed @othiext of discrete noncommutative
gauge theories [7].

5. Interpretation

A class of stable extrema of the TEK action (3.1) are the ongalutionsQ,, of the equation
d70,0,0/0) = ¥k 1, where cogZk,,) > 0 for all u < v (stability condition). These
solutions are called ‘fluxon$’[4]. Solutions of the same ‘fluxon levelk = %szv kf“, €7, are
gauge-equivalent and have the same classical a&jep,] k. The classical minimum of the TEK
action — the twist-eater — is the solution for the speciaééas = 0.

If we consider the cask,, = L, then the stationarity equation QHQVQL93 = 1, whose
solution manifold is the set of all diagonal matrices. Thigsistable minimum of the TEK action.
As in the case of the untwisted EK model (Section 2), flucturetiaround this extremum result in
the centre configurationg,(1) having a lower action than the general diagonal matrix.réloee,
the Zy symmetry is also spontaneously broken in these extremaniimerical data suggests that
at intermediate couplings the TEK model is dominated by alad) matrices, even though these
extrema do not survive the largedimit (becauseS;g O N). However, at intermediate couplings
and finiteN, the magnitude of the fluctuationg, around the twist-eater may be large enough to
overcome the barriers between extrema and eventually ttmaecentre configuration. While the

2Normally, the term ‘fluxon’ is only used when the solution fgivenk,, gives a non-zero contribution to the
partition function in theN — o limit. Here we abuse the language and call ‘fluxon’ any solutif this equation.



Structure and properties of the vacuum of the Twisted Eguchi-Kawai model Hélvio Vairinhos

N —

100 {1 0.275(5) K] 0.350(5) 2]
121 7”1 0.250(5) K] 0.325(5) £ 03605  EAO]
144 [z'0] 0.235(5) [ 0275(5) K2 0.325(5) R 0.370(5) 0]
169 [zX] 0.235(15) 3] 0.253) 3l 0.355(15) E9] 037(3) Y]
196 [z 0.235(15) Zal 0.28(3) 9] 0.385(15) AU
225 [Z3")] 0.22(3) P31  028(3) E9] 0.415(15) PAU]
256 [z2"] 0205015 il 0.235(15) E&] 0.28(3) Z9] 0.43(3) gl

Table 1: Critical values ob associated with the breaking/restoration of one (or mggedymmetries of the
TEK model, for cold start simulationsZ,'{,] refers to the phase witk unbroken directions; the numerical
values denote the critical couplings; a numerical valusspra multiple columns is the critical coupling
associated with the simultaneous breaking of more tharzqreymmetry.

contribution to the TEK action from fluctuations around thést-eater configuration is quadratic,
it is of higher order around centre configurations:

STEK(rH) ~ bN Zﬁ<vTr (Fﬁv) + = O(XZ) + O(XS)
Srex (zu1) ~ 24DN2sir? (T’TN) 4= O(X0) + O(X3)

We may imagine that, at some critical coupling, the actianfliectuations around the twist-eater
may become larger than the action for fluctuations aroundn&reeonfiguration, inducing the
tunnelling between the two extrema and hence breakinggrg/mmetry spontaneously.

We also observe that the critical couplings of #yg-breaking transitions (Table 1) show a
dependence witNl that points to a widening of thé-broken region for increasiny. In addition,
we have not been able to detect any evidence for the expeatdihiog/deconfining transition (or
any other transitions [5]) at weak couplings.

6. Anisotropic TEK model and fluxon vacua

We also simulated anisotropic TEK models, mainly to lookdeidence of the largdt con-
fining/deconfining transition at finite temperature. Theacbf the most general anisotropic TEK
model is given by:

4
Srex(&,U) =bN ; EuTr (1 —2,,UUU L)) (6.1)
UFEV

whereé,, = Z:‘K‘—g (k #A, andk,A # u,v), andé, = :—: (a, is the lattice spacing in thg di-
rection). ForN > 81, we observe that thé symmetry is broken by centre configurations. For
N < 64, however, different phases appear at intermediate ibguy analysing the values of the
plaguettes and eigenvalue structure of the link varialnékdése new extrema (Fig.3), we conclude
that they are fluxon configurations [4]. We observe intermiedstable configurations belonging to
several different fluxon levels, depending on the choicg ah particular, foré; = &, we observe
van Baal fluxons [4] for the first time, namely fluxons of thedbv= 1 (Fig.3); for different cases,
the fluxons are more general. We again found no evidence dordhfining/deconfining transition
(or any other transitions [5]) in the anisotropic TEK model.
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Figure 3: Traces of plaquettes,, and eigenvalue densities of link variablp$e ), in the SU(64) anisotropic
TEK model, for different choices d;: & = 0.15 (left) andé; = (0.50,0.75,1.00) (right).

7. Conclusions

We showed that for sufficiently largd, the Z3, symmetry of SUK) TEK models is spon-
taneously broken at intermediate couplings, where cerdndigurations dominate. Thesg-
breaking phases appear to be extending further into wegMioguasN increases. Even though we
cannot yet establish a clear trend for thisdlependence, it suggests that the range of couplings of
the Z,-broken phases may continue to grow and eventually domthaterhole phase diagram of
the TEK model in theN — oo limit, thus invalidating the EK correspondence for this rabar at
least making it impractical for the study of the physics of&N gauge theories.

We also observed several fluxon vacua dominating at inteéateedouplings in anisotropic
TEK models. This shows that the phase diagram of the TEK miedelch richer than previously
thought. However, no evidence of any transition to a phygibase was observed, which could
mean that they are absent or inaccessible.
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