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by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that
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that directly links chiral symmetry breaking with confinement.
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Dynamically induced scalar quark confinement Reinhard Alkofer

1. Introduction

Quark confinement and dynamical chiral symmetry breaking are the two most prominent phe-

nomena of infrared QCD. Recent Monte-Carlo lattice calculations made clear that there is, at least

for quarks in the fundamental representation, a close and yet not fully understood relation between

these two properties of QCD. E.g. the spectral properties of the Dirac operator reflect both, con-

finement and chiral symmetry breaking [1]. It is the central aim of this talk to shed light onto this

issue from the point of view of QCD Green functions in the Landau gauge.

In this and related functional approaches dynamical chiral symmetry breaking finds a direct

explanation [2], the main challenge for such non-perturbative methods is posed by the properties of

the linearly rising static quark-antiquark potential. There have been many quite different attempts to

relate the properties of this potential to properties of QCD, and thus explain quark confinement. In

ref. [3] some of these pictures have been briefly reviewed. These explanations for confinement are

seemingly different but there are surprising relations between them which are not yet understood.

Given the current status one has to note that these theories are definitely not mutually exclusive but

simply reveal only different aspects of the confinement phenomenon. And into one special facet,

the above mentioned relation to broken chiral symmetry, there is novel insight from the Landau

gauge Greens functions approach.

2. Infrared Yang-Mills theory in the Landau gauge

2.1 Infrared Exponents of Gluons and Ghosts

= +
q − l

l

q

Figure 1: The Dyson-Schwinger equation for the ghost-gluon vertex.

Let us start by looking at the Dyson-Schwinger equation for the ghost-gluon vertex function

as depicted in fig. 1. In the Landau gauge the gluon propagator is transverse, and therefore one can

employ the relation

lµDµν(l −q) = qµDµν(l−q) , (2.1)

to conclude that the ghost-gluon vertex stays finite when the outgoing ghost momentum vanishes,

i.e. when qµ → 0 [4]. This argument is valid to all orders in perturbation theory, a truely non-

perturbative justification of the infrared finiteness of this vertex has been given in refs. [5, 6, 7].

Using this property of the ghost-gluon vertex the Dyson-Schwinger equation for the ghost

propagator, see fig. 2, can be analysed. The only unknowns in the deep infrared are the gluon and

the ghost propagators:

Dµν(k) =
Z(k2)

k2

(

δµν −
kµkν

k2

)

, DG(k) = −G(k2)

k2
. (2.2)
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Figure 2: The Dyson-Schwinger equation for the ghost propagator.

In Landau gauge these (Euclidean) propagators are parametrized by two invariant functions, Z(k2)

and G(k2), respectively. As solutions of renormalized equations, these functions depend also on

the renormalization scale µ . Furthermore, assuming that QCD Green functions can be expanded

in asymptotic series, the integral in the ghost Dyson–Schwinger equation can be split up in three

pieces: an infrared integral, an ultraviolet integral, and an expression for the ghost wave function

renormalization. Hereby it is the resulting equation for the latter quantity which allows one to

extract definite information [8] without using any truncation or ansatz.

One obtains that the infrared behaviour of the gluon and ghost propagators is given by power

laws, and that the exponents are uniquely related such that the gluon exponent is -2 times the ghost

exponent [9]. As we will see later on this implies an infrared fixed point for the corresponding run-

ning coupling. The signs of the exponents are such that the gluon propagator is infrared suppressed

as compared to the one for a free particle, the ghost propagator is infrared enhanced.

Figure 3: The Dyson-Schwinger equation for the 3-gluon vertex.

Given the infrared power laws, that the Yang-Mills propagators obey, one can infer the infrared

behaviour of higher n-point functions. To this end the n-point Dyson-Schwinger equations have

been studied in a skeleton expansion, i.e. a loop expansion using dressed propagators and vertices.

Furthermore, an asymptotic expansion has been applied to all primitively divergent Green func-

tions [10]. As an example consider the Dyson-Schwinger equation for the 3-gluon vertex which is

diagrammatically represented in fig. 3. Its skeleton expansion, see fig. 4, can be constructed via the

Figure 4: An example for the skeleton expansion of the 3-gluon vertex.

insertions given in fig. 5. These insertions have vanishing infrared anomalous dimensions which

implies that the resulting higher order terms feature the same infrared scaling. Based on this the
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Figure 5: Insertions to reconstruct higher orders in the skeleton expansion.

following general infrared behaviour for one-particle irreducible Green functions with 2n external

ghost legs and m external gluon legs can be derived[10, 11]:

Γn,m(p2) ∼ (p2)(n−m)κ+(1−n)(d/2−2) (2.3)

where κ is one yet undetermined parameter, and d is the space-time dimension. Exploiting Dyson-

Schwinger equations and Exact Renormalization Group Equations one can show that this infrared

solution is unique [12].

2.2 Infrared fixed point of the Yang-Mills running coupling

The infrared behaviour (2.3) especially includes

G(p2) ∼ (p2)−κ , Z(p2) ∼ (p2)2κ Γ3g(p2) ∼ (p2)−3κ , Γ4g(p2) ∼ (p2)−4κ (2.4)

and therefore the running couplings related to these vertex functions possess an infrared fixed point:

αgh−gl(p2) = αµ G2(p2)Z(p2) ∼ constgh−gl

Nc

, α3g(p2) = αµ [Γ3g(p2)]2 Z3(p2) ∼ const3g

Nc

,

α4g(p2) = αµ Γ4g(p2)Z2(p2) ∼ const4g

Nc

. (2.5)

The infrared value of the coupling related to the ghost-gluon vertex can be computed[5, 13]:

αgh−gl(0) =
4π

6Nc

Γ(3−2κ)Γ(3+ κ)Γ(1+ κ)

Γ2(2−κ)Γ(2κ)
(2.6)

This yields αgh−gl(0) = 2.972 for Nc = 3 and κ = (93−
√

1201)/98 ≃ 0.595353, which is the

value obtained with a bare ghost-gluon vertex.

2.3 Positivity violation for the gluon propagator

Positivity violation of the propagator of transverse gluons has been for a long time a conjecture

which has been supported recently, see e.g. [14, 15] and references therein. The basic feature is

hereby the infrared suppression of transverse gluons caused by the infrared enhancement of ghosts.

As this behaviour clearly signals the confinement of tranverse gluons [16] it is certainly worth to

have a closer look at the underlying analytic structure of the gluon propagator.

Note that the infrared exponent κ is an irrational number. Given the infrared power laws this

implies already that the gluon propagator possesses a cut on the negative real p2 axis. It is possible

to fit the solution for the gluon propagator quite accurately without introducing further singularities

in the complex p2 plane [14]:

Zfit(p2) = w

(

p2

Λ2
QCD + p2

)2κ
(

αfit(p2)
)−γ

. (2.7)
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w is a normalization parameter, and γ = (−13Nc + 4N f )/(22Nc − 4N f ) is the one-loop value for

the anomalous dimension of the gluon propagator. The running coupling is expressed as [17]:

αfit(p2) =
αS(0)

1+ p2/Λ2
QCD

+
4π

β0

p2

Λ2
QCD + p2

(

1

ln(p2/Λ2
QCD)

− 1

p2/Λ2
QCD−1

)

(2.8)

with β0 = (11Nc −2N f )/3. It is important to note that the gluon propagator (2.7) possesses a form

such that Wick rotation is possible!

3. Dynamically induced scalar quark confinement

The above presented results provide an explanation how gluon confinement works in a covari-

ant gauge, but due to the infrared suppression of the gluon propagator quark confinement seems

even more mysterious than ever. To proceed as in the above described studies the Dyson-Schwinger

equation for the quark propagator is analyzed with the result that the structure of the quark propa-

gator depends crucially on the quark-gluon vertex [2, 17, 18, 19, 20]. Therefore a detailed study of

this three-point function, and especially its infrared behaviour, is mandatory. Its Dyson-Schwinger

equation is diagrammatically depicted in fig. 6, its skeleton expansion in fig. 7. But there is a

= + + + +

Figure 6: The Dyson-Schwinger equation for the quark-gluon vertex.

= + + ++

Figure 7: Some leading terms in the skeleton expansion for the quark-gluon vertex.

drastic difference of the quarks as compared to Yang-Mills fields: They possess a current mass.

Even if this were not the case one expects dynamical chiral symmetry breaking and thus dynamical

mass generation to occur.

To generalize the infrared analysis of the Yang-Mills theory to full QCD [21] one concentrates

first on the quark sector of quenched QCD and chooses the masses of the valence quarks to be

large, i.e. m > ΛQCD. The remaining scales below ΛQCD are those of the external momenta of the

propagators and vertex functions. Then the Dyson-Schwinger equations can be used to determine

the selfconsistent solutions in terms of powers of the small external momentum scale p2 ≪ Λ2
QCD.

The equations which have to be considered in addition to the ones of Yang-Mills theory are the one

for the quark propagator and the quark-gluon vertex.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
8
6

Dynamically induced scalar quark confinement Reinhard Alkofer

The full quark-gluon vertex Γµ can consist of up to twelve linearly independent Dirac ten-

sors. Some of those would vanish if chiral symmetry would be realized in the Wigner-Weyl mode:

These tensor structures can be non-vanishing either if chiral symmetry is explicitely broken by cur-

rent masses and/or chiral symmetry is realized in the Nambu-Goldstone mode (i.e. spontaneously

broken). From a solution of the Dyson-Schwinger equations we infer that these “Dirac-scalar”

structures are, in the chiral limit, generated non-perturbatively together with the dynamical quark

mass function in a self-consistent fashion: Dynamical chiral symmetry breaking reflects itself not

only in the propagator but also in the quark-gluon vertex function.

From such an infrared analysis one obtains an infrared divergent solution for the quark-gluon

vertex such that Dirac vector and “scalar” components of this vertex are infrared divergent with

exponent −κ − 1
2

[21]. A numerical solution of a truncated set of Dyson-Schwinger equations

confirms this infrared behavior. The driving pieces of this solution are the scalar Dirac amplitudes

of the quark-gluon vertex and the scalar part of the quark propagator. Both pieces are only present

when chiral symmetry is broken, either explicitely or dynamically.

For the coupling related to the quark-gluon vertex we obtain

αqg(p2) = αµ [Γqg(p2)]2 [Z f (p2)]2 Z(p2) ∼ constqg

Nc

1

p2
, (3.1)

using that

Γqg(p2) ∼ (p2)−1/2−κ , Z f (p2) ∼ const , Z(p2) ∼ (p2)2κ . (3.2)

Note that the coupling (3.1) is singular in the infrared contrary to the couplings from the Yang-Mills

vertices.

In a next step the anomalous infrared exponent of the four-quark function is determined. Note

that the static quark potential can be obtained from this four-quark one-particle irreducible Greens

function, which, including the canonical dimensions, behaves like (p2)−2 for p2 → 0. Therefore

employing the well-known relation for a function F ∝ (p2)−2 one obtains

V (r) =

∫

d3 p

(2π)3
F(p0 = 0,p)eipr ∼ |r| (3.3)

for the static quark-antiquark potential V (r). We conclude at this point that, given the infrared

divergence of the quark-gluon vertex as found in the solution of the coupled system of Dyson-

Schwinger equations, the vertex overcompensates the infared suppression of the gluon propagator,

and one therefore obtains a linear rising potential. In addition, this potential is dynamically induced

and has a strong scalar component.

To elucidate the here found relation between chiral symmetry breaking and quark confinement

we keep chiral symmetry artificially in the Wigner-Weyl mode, i.e. in the chiral limit we force the

quark mass term as well as the “scalar” terms in the quark-gluon vertex to be zero. We then find that

the resulting running coupling from the quark-gluon vertex is no longer diverging but goes to a fixed

point in the infrared similar to the couplings from the Yang-Mills vertices. Correspondingly, one

obtains a 1/r behaviour of the static quark potential. The “forced” restoration of chiral symmetry

is therefore directly linked with the disappearance of quark confinement. The infared properties of

the quark-gluon vertex in the “unforced” solution thus constitute a novel mechanism that directly

links chiral symmetry breaking with confinement.
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4. Summary

In this talk we have reported on results of functional approaches to infrared QCD in the Lan-

dau gauge. We have elucidated the mechanism for gluon confinement: Positivity of transverse

gluons is violated. Furthermore, in the Yang-Mills sector the strong running coupling is infrared

finite whereas the running coupling from the quark-gluon vertex is infrared divergent. Chiral sym-

metry is dynamically broken, and this takes place in the quark propagator and the quark-gluon

vertex. We have provided clear evidence that static quark confinement in the Landau gauge is due

to the infrared divergence of the quark-gluon vertex. In the infrared this vertex has strong scalar

components which induce a relation between confinement and broken chiral symmetry.
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