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1. Introduction

It is an old idea that large-N QCD might be exactly reformulated as a string theory. Although
this relation has never been made precise, the results obtained in lattice gauge theory leave little
doubt that there is a connection between these two theories.One of these results that leads to such
a conclusion is the energy spectrum of the flux-tube. A flux-tube in SU(N) gauge theories with
length l much larger than its width is expected to be described by an effective low energy string
theory. This can be verified by studying the energy spectrum of the flux-tube and comparing it to
the effective string theory prediction.

In this work we focus on the spectrum of the closed fundamental flux-tube in pureSU(N)

gauge theories inD = 2+1 dimensions. We calculate the energies of the lowest lying∼30 states.
This allows to extend the comparison with theoretical predictions to states with more quantum
numbers and a nontrivial degeneracy structure. More precisely, we want to check whether the
closed flux-tube can be described by the Nambu-Goto (NG) string model [1], and, if so, how good
a description it is.

The flux-tubes that we study have lengths that range from∼ 0.65fm to ∼ 2.60fm and the
lattices we use have spacingsa≃ 0.04 fm anda≃ 0.08 fm (Despite working in pure gauge theories
and inD = 2+1, we define 1fm through the conventionσ ≡ (440MeV)2). The gauge groups that
we study haveN = 3,6. The use ofN > 3 will suppress any mixing amplitudes (eg. glueball-string
mixing) that cannot be described by a simple low-energy effective string theory model.

The study of confining flux-tubes with lattice techniques hasbeen an active field for the past
three decades, and we refer the reader to some recent papers [2]. For more details on the calculation
and relevant references see our longer write-up [3].

2. Lattice construction

We define our gauge theory on a three-dimensional periodic Euclidean space-time lattice with
L×L⊥×LT sites. It is important to mention that in order to minimize the finite volume effects, we
increaseL⊥ andLT as we decrease the length of the flux-tube. For the calculation of the physical
observables we perform Monte-Carlo simulations using the standard Wilson plaquette action:

SW = β ∑
P

[

1− 1
N

ReTrUP

]

, (2.1)

The bare couplingβ is related to the dimensionful couplingg2 through lima→0 β = 2N/ag2. In the
large–N limit, the ’t Hooft couplingλ = g2N is kept fixed, and so we must scaleβ = 2N2/λ ∝ N2

in order to keep the lattice spacing fixed. The simulation we use mixes standard heat-bath and
over-relaxation steps in the ratio 1 : 4. These are implemented by updatingSU(2) subgroups using
the Cabibbo-Marinari algorithm.

We have calculated the string spectrum for the case ofSU(3) with a ≃ 0.04,0.08 fm and
SU(6) with a≃ 0.08 fm. For the case ofSU(3) anda≃ 0.08 fm, the string lengths ranged between
∼ 0.65fm and∼ 2.60fm and for the two other cases between∼ 0.95fm and∼ 2.0fm.

3. General strategy

We calculate the energies of flux-tubes that are closed around a spatial torus using the correla-
tors of suitably smeared Polyakov loops that wind once around the corresponding spatial tori and
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that have vanishing transverse momentum. This is a standardtechnique with smearing/blocking de-
signed to enhance the projection of our operators onto the physical states. We classify our operators
using the quantum numbers of transverse parity inP=± and winding momentumq= 0,±1,±2, . . .

in units of 2π/l .

For each combination of these quantum numbers we construct the full correlation matrix of
operators and use it to obtain best estimates for the string states using a variational method applied
to the transfer matrix̂T = e−aH.

Since we are mostly interested in the excited states, it makes sense to introduce transverse
deformations in the simple Polyakov loop. Using this procedure we can increase the number of
different operators to 80-200 and construct Polyakov loopsdescribed by the quantum numbers of
P andq. We present the different paths used in the calculation in Table 1.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Table 1: The lattice paths used in the construction of Polyakov loopsin this work. Our set of operators
can be divided into three subsets: a. The simple line operator (1) in several smearing/blocking levels, b.
The wave-like operator (2) whose number depends uponL, L⊥, and the smearing/blocking level, c. The
pulse-like operators (3-15) in several different smearing/blocking levels.

4. Theoretical expectations: The spectrum of the Nambu-Goto String model

The action of the Nambu-Goto (NG) model [1] is the area of the worldsheet swept by the prop-
agation of the string. This model is quantum-mechanically inconsistent due to the Weyl anomaly
(D 6= 26), but since this anomaly is suppressed for long strings [4] it can still be considered as an
effective low energy model. The classical ground state of the model is the worldsheet configuration
with the minimal area, and the transverse area fluctuation around this ground state constitute the
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quantum spectrum of the model. These fluctuations are usually referred to as left/right movers,
depending on the momentum that they carry in the direction parallel to the string axis.

The single string states can be characterised by the windingnumberw which indicates how
many times the string winds around the torus, by the occupation numbernL,(R)(k) and the energyk
of the left and right movers and also by the center of mass momentum~pc.m.. By projecting to zero
transverse momentum we are left only with the momentum alongthe string axis which is quantized
in units of 2πq/l with q = 0,±1,±2, . . .. These quanta are not independent ofnL,R and obey the
level matching constraintNL −NR = qw, whereNL(R) enumerates the momentum contribution of
the left(right) movers in a certain state as follows:

NL = ∑
k>0

∑
nL(k)>0

nL(k)k and NR = ∑
k′>0

∑
nR(k′)>0

nR(k′)k′ (4.1)

The string states can be characterised as irreducible representations of theSO(D− 2) group that
rotates the spatial directions transverse to the string axis. In ourD = 2+1 case this group becomes
the transverse parity with eigenvaluesP= (−1)∑i=1 nL(ki)+∑ j=1 nR(k′j ). Finally, the energy of a closed-
string state described by the above quantum numbers for anyD is given by the following relation:

E2
NL,NR,q,w = (σ lw)2 +8πσ

(

NL +NR

2
− D−2

24

)

+

(

2πq
l

)2

. (4.2)

5. Theoretical expectations: Effective string theories

Since in 2+1 dimensions the NG string is at best an effective low-energy string theory, it makes
sense to generalise it and write the most general form of an effective string action consistent with
the symmetries of the flux-tube system. This was first done in the early eighties for the case of
w = 1 andq = 0 in [5], and the spectrum obtained for anyD was given by:

En = σ l +
4π
l

(

n− D−2
24

)

+O(1/l2), (5.1)

wheren = 0,1,2, .... The second term in the above formula is known as the Lüscher term and
is expected to be universal. One can easily show that the NG model obeys this universality by
expanding the square-root of Eq. (4.2) to leading order in 1/l .

Recently, the work [5] was extended in [6], where the authorsused an open-closed string
duality of the effective string theory. Using this duality they showed that for anyD theO(1/l2) is
absent from Eq. (5.1), and that inD = 2+1 theO(1/l3) has a universal coefficient. Consequently,
in 2+1 dimensions Eq. (5.1) is extended to:

En = σ l +
4π
l

(

n− 1
24

)

− 8π2

σ l3

(

n− 1
24

)2

+O(1/l4), (5.2)

or in the equivalent form:

E2
n = (σ l)2 +8πσ

(

n− 1
24

)

+O(1/l3). (5.3)

The form Eq. (5.3) is particularly convenient since the two first terms on the right hand side are the
predictions of the NG model that we find to be a very good approximation.
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Motivated by this recent development, we decided to fit our data using the following ansatz:

E2
fit = E2

NG−σ
Cp

(

l
√

σ
)p , p≥ 3 (5.4)

whereE2
NG is the Nambu Goto prediction given by Eq. (4.2) forw = 1,n = NL = NR and whereCp

are dimensionless coefficients that in general can depend onthe quantum numbers of the state.

6. Results

In this section we present our results from the calculation.The results were obtained for
SU(3) with β = 21.00,40.00 and forSU(6) with β = 90.00. We have focused on strings with
1.4 <∼ l

√
σ <∼ 5.5. All energies that we present were obtained from single cosh fits to the correlation

functions of our ‘best’ operators - see discussion in Section 3.
We present the results in Figs. 1,2. The lines are the predictions of the NG model. The

string tensions used for these predictions were extracted from the ground state energies of the
q = 0 calculations with the use of the ansatz Eq. (5.4) forp = 3. The fitting parameters are the
dimenionlessC3 and the lattice spacing in physical unitsa

√
σ . We present these in Table 2.

Gauge group β a2σ C3 Confidence level

SU(3)
β = 21.00 0.030258(26) 0.160(21) 69%
β = 40.00 0.007577(13) 0.05(31) 15%

SU(6) β = 90.00 0.029559(36) 0.04(21) 88%

Table 2: The parametersa2σ andC3 in the fit.

According to our results the NG predictions are very good approximations to the flux-tube
spectrum and deviate from our data only at the level of∼ 2% whenl

√
σ >∼ 4.2. In contrast to that, a

comparison of our data to Eq. (5.1) and/or Eq.( 5.2) fails even whenl
√

σ >∼ 4. This is an important
point that tells us that the higherO(1/l4) terms in Eq. (5.2) are significant for the excited states at
these lengths, and that they are captured quite well by Eq. (4.2) (to the level of∼ 2%, a deviation
that may or may not be due to a percent level systematic errorsthat we did not aim to control for the
excited states). Finally, it is important to remark that thedegeneracy pattern predicted by the NG
model is seen from our data. For example, the second energy level is fourfold degenerate at large-l .
This degeneracy includes two positive parity states and twonegative parity states, and these start
splitting significantly oncel

√
σ <∼ 3.

Next, we performed fits of the energy of the excited states. Inthe case of the first excited
energy level, where there is only one state per level, we usedthe fitting ansatz Eq. (5.4). In the
case of the second excited energy level, where for each parity there are two states, we fitted the
difference between the energies squared of these states. The fits showed that to unambiguously
determine the powerp, and test the Lüscher-Weisz prediction of [6], we need statistical errors
which are at least 2-3 times smaller than the ones our data has, and a simultaneous control of any
systematic errors that may be important at the level of a few percents accuracy.

Finally, we move to the non-zero longitudinal momentumq 6= 0 calculation. In Section 4 we
have mentioned that the number of left and right movers in theNG prediction is constrained by the
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Figure 1: The energies of the first three energy levels divided by
√

σ as a function ofl
√

σ . The three lines
are the NG predictions for the ground state and the excited states. The green lines are the NG predictions
expanded to leading order Eq. (5.1) and next-to-leading order Eq. (5.2) forn = 1. Left panel:We present
the results for the case ofSU(3) for two different values ofβ (two different lattice spacings). Forβ = 21,
positive parity states are presented in red and negative parity states in blue. Forβ = 40, positive parity states
are presented in cyan and negative parity states in pink. Right panel:We present the results for the case of
SU(6) with β = 90. Positive parity states are presented in red and negativeparity states in blue.

level matching conditionNL−NR = qw. The comparison of this prediction to our data is presented

in Fig. 2, where we plot
√

E2/σ −
(

2πq/
√

σ l
)2

as a function ofl
√

σ . It is clearly seen that our
data is very well described by Eq. (4.2).

7. Summary

We have calculated the energy spectrum of closed strings in the fundamental representation
of SU(N) gauge theories in 2+1 dimensions. To perform this calculation we constructed a basis
of ∼ 80− 200 operators for each configuration of quantum numbers. Theuse of this large ba-
sis of operators is convenient for two reasons. Firstly, it is possible to extract masses of excited
states with high confidence since it increases the overlaps of our lattice operators onto the physical
states (compared to what we observe using the simple line operator in 5 smearing/blocking levels).
Secondly, it enables us to study states with quantum numberslike the transverse parityP and the
longitudinal momentumq.

Comparing our results to different theoretical predictions, we find that the agreement with the
NG prediction in Eq. (4.2) is very good, including the expected degeneracy pattern. This agreement
is in striking contrast to what we find when we simply compare to the Lüscher term as in Eq. (5.1)
or to the Lüscher-Weisz prediction in Eq. (5.2). While for the ground states these describe our
data already atl

√
σ ≃ 3 where they are indistinguishable from the full NG formula,for the excited

states the situation is completely different. In particular, whereas the NG prediction works well for
the first excited state already atl

√
σ ≃ 3, the predictions of Eq. (5.1) and Eq. (5.2) are still very far

6
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NR = 3,NL = 1,q = 2,w = 1
NR = 2,NL = 0,q = 2,w = 1
NR = 2,NL = 1,q = 1,w = 1
NR = 1,NL = 0,q = 1,w = 1

1st e.s forq = 2,P = −
1st e.s forq = 2,P = +

g.s forq = 2,P = −
g.s forq = 2,P = +

1st e.s forq = 1,P = −
g.s forq = 1,P = +
g.s forq = 1,P = −

l
√

σ

√

E
2 /

σ
−

(2
πq

/√
σ

l)
2

4.543.532.52
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Figure 2:
√

E2/σ −
(

2πq/
√

σ l
)2 as a function ofl

√
σ for the ground state and excited states of the non-

zero momentum along the string direction. The four lines present the NG predictions Eq. (4.2). ForNR =

3,NL = 1 andq= 2, the expected degeneracy is three, which agrees with our excited state data, i.e. two(one)
states with positive(negative) parity in red(blue).

from the data (see Figure. 1). This demonstrates that a confining flux-tube can be described by a
covariant string, with small or moderate corrections down to very short lengths.
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