
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
9
1

Strings in SU(N) gauge theories in 2+1 dimensions:
beyond the fundamental representation

Barak Bringoltz∗ab and Michael Tepera

aRudolf Peierls Centre for Theoretical Physics
University of Oxford
1 Keble Road, Oxford, OX1 3NP

bIsaac Newton Institute for Mathematical Sciences
University of Cambridge
20 Clarkson Road, Cambridge, CB3 0EH, U.K.
E-mail: barak@thphys.ox.ac.uk, m.teper1@physics.ox.ac.uk

We calculate energies and tensions of closedk-strings in (2+1)-dimensional SU(N) gauge theories

with N=4,5,6,8. When we study the dependence of the ground state energy on the string length,

we find that it is well described by a Nambu-Goto (NG) free bosonic string for large lengths.

At shorter lengths we see deviations which we fit, and this allows us to control the systematic

error involved in extracting the tension. We compare the resulting string tensions with Casimir

scaling, which we find to be lower than our data by 1%−4%. Extrapolating our results toN = ∞
we see that our data fits more naturally to 1/N rather than 1/N2 corrections. Finally, we see

that the full spectrum of thek-string states falls into sectors that belong to particularirreducible

representations ofSU(N).
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1. Introduction
In this work we studySU(N) gauge theories inD = 2+1 space-time dimensions and focus on

the energies and tensions of closed strings that carry flux inSU(N) representations whose N-alityk
is larger than one. (For references on related lattice workssee our companion contribution to these
proceedings [1] as well as [2]-[5]). The reason we restrict ourselves toD = 2+ 1 dimensions is
closely related to our motivation in the related study [6], where we tested the Karabali-Kim-Nair
(KKN) analytic prediction [7] for the fundamental string tensionσ . As a natural continuation to
that work, we now aim to test how accurate is the following KKNprediction for the tension of a
string in a generalSU(N) representationR.

σR = σ ·
CR

C1
. (1.1)

HereCR is the quadratic Casimir of the representation, andC1 = (N2− 1)/2N is the Casimir of
the fundamental representation. We note here that the above‘Casimir scaling’ of string tensions is
also predicted by other approaches to 2+1 dimensions (for example see [8]). The KKN prediction
lacks the physics of screening, and we thus take a practical point of view and regard Eq. (1.1) as an
approximate prediction for the tensions of stablek-strings, and for the asymptotic energy per unit
length of excitedk-strings states with flux in an excited representation.

Besides comparing to Eq. (1.1), we are also interested in theway thek-string energy depends
on the string lengthl (which will reveal its central charge), on the manner in which the planar limit
is approached (i.e. whether the corrections toN = ∞ scale like 1/N or 1/N2), and on a curious
pattern of degeneracies seen in previous studies of thek-string spectrum.

2. Methodology

We define the gauge theory on a discretized periodic Euclidean three dimensional space-time
lattice, with spacinga and, typically, withL2

s Lt sites. The action we use is the ordinary Wilson
action, where the bare couplingβ is related to the dimensionful couplingg2 by lima→0 β = 2N

ag2 . In

the large–N limit, the ’t Hooft couplingλ = g2N is kept fixed, and so we must scaleβ = 2N2/λ ∝
N2 in order to keep the lattice spacing fixed (up toO(1/N2) corrections). We calculate observables
by performing Monte-Carlo simulations of the Euclidean path integral, in which we use a mixture
of Kennedy-Pendelton heat bath and over-relaxation steps for all theSU(2) subgroups ofSU(N).

We measure the energy of flux tubes closed around a spatial torus, from the correlators of
suitably smeared Polyakov loops that have vanishing transverse momentum [9, 4]. For each Hilbert
space sector of given N-alityk we construct lattice operators that couple to states of thatN-ality.
These are given by TrU k, TrU k−1TrU . . . , (TrU)k, whereU is the path-ordered product of smeared
links around the spatial torus. We then construct the full correlation matrix and use it to obtain best
estimates for the string states using a variational method applied to the transfer matrix̂T = e−aH

(see for example [9] and references therein).
Our study is logically divided into two. We first investigatethe way thek-string energyE

depends on its lengthl. In [6, 1] we have discussed the theoretical possibilities for E(l), and we
will not reiterate that discussion here, but rather just quote its conclusion : a natural way to fit our
data for the energy is with

E2
k (l) = E2

NG−
Ck

(l
√

σk)
3 ; E2

NG = (σkl)2−σk
π
3

, (2.1)
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whereENG is the ground state energy of a closed string in the Nambu-Goto string theory.

For thek = 1 case we found that our data is very well described by this ansatz withC1
<
∼ 0.3. We

now ask whether this situation persists fork > 1 strings as well. This will also tell us whether thek-
strings belong to the same IR universality class as thek = 1 string. We perform these measurements
for SU(4) at β = 28.00,50.00, SU(5) at β = 80.00, SU(6) at β = 59.40,90.00, andSU(8) at
β = 108.00,192.00. These bare couplings correspond to lattice spacings ofa ≃ 0.06,0.08,0.11
fm, depending onN. The string lengthsl ranged between∼ 0.45 fm and∼ 3 fm, again depending
on the values ofN anda.1

After we obtain an estimate forEk(l) we use it to extract string tensions from string energies
which were measured on a set of lattices with increasingly small spacings in the rangea ≃ 0.05−
0.2 fm. This is done only for strings whose length obeysl >

∼ 3/
√

σ ≃ 1.4−1.5 fm. This way of
extracting tensions controls the systematic error involved in the usual neglect of the sub leading
corrections to the Luscher term. Once we obtain the continuum string tensions, we extrapolate our
results to the large-N limit. This is particularly interesting since there existsa controversy in the
literature with respect to the possibility of having 1/N corrections in thek-string tensions [10, 3].

3. Results : length dependence of the k-string energies and their conformal anomaly
In the left panel of Fig. 1 we present the energy of thek = 2 string forSU(5) atβ = 80.00. The

plot shows the energy divided byσ l (hereσ is the fundamental string tension which we obtain in
[1]) vs. the length in physical units,l

√
σ . The string tension in lattice units isa2σ = 0.016874(12)

which gives a lattice spacing ofa ≃ 0.058 fm, and tells us that our string length stretches from
≃ 0.6 fm to≃ 1.85 fm. The red line that goes through our data is a fit of the formEq. (2.1) which
results in the ratioσ2/σ = 1.5244(21) andC2 = 1.41(7) (the fit is good withχ2/do f ≃ 3/4). The
coefficientC2 is thus much larger than the corresponding one fork = 1, which was 0.0554(139)
for this data [1]. This reflects the fact that the NG prediction is a much better approximation for
k = 1 than it is fork > 1, which can be easily seen by comparing the left panel of Fig.1 to the
corresponding plot fork = 1 [1].

The results for all the gauge groups that we study are similarand can be encompassed in a
single formula withC2 = 3(2). For higher values ofk the results are less accurate, but we can still
fit them and find that takingC3 = 4.5(2.0) andC4 = 5.5(1.5) for k = 3 andk = 4, respectively,
describes all our data. In practice, provided that the lengths of our strings obeyl >

∼ 3/
√

σ , we see
that the correction term in Eq. (2.1) is at most a 0.5% contribution to the energy.

We now examine the universality class of the string by fittingpairs of adjacent points in the
left panel of Fig. 1, and in the corresponding data sets for all other values ofN andk, with the form
E2 = (σkl)2−σk

π
3 ×Ceff. As the points we fit have larger and larger values ofl, thenCeff should

approach the central charge of thek-string. In the case ofk = 1 we have very strong evidence that

Ceff
l→∞
→ 1 (see [6, 1] and references within). In thek > 1 the situation is harder to pin down and

in addition there is a recent prediction [5] suggesting thatCeff
l→∞
→ σk/σ . We present our results in

the right panel of Fig. 1 for the casesN = 4,5,6,8 andk = 2, where it is reasonably clear thatCeff

decreases towards 1 asl increases. We have similar results fork = 3,4, which are, however, less
accurate due to the larger energies.

1For more details on the lattice parameters of our field configurations see [1].
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Figure 1: Left: Ground state energy of thek = 2 string inSU(5) andβ = 80.00. Our fit in red, and in
blue(black) the NG(Luscher term) predictions. Right:The value ofCeff (see text) of thek = 2 strings in
SU(4,5,6) for β = 50.00,80.00,90.00, respectively (lattice spacings presented in the legend).

rk(N) r2(4) r2(5) r2(6) r2(8) r3(6) r3(8) r4(8)

Lattice 1.3553(23) 1.5275(26) 1.6242(35) 1.7524(51) 1.8590(63) 2.1742(187) 2.3725(111)

Casimir 1.3333. . . 1.5 1.6 1.7142. . . 1.8 2.1429. . . 2.2857. . .

Table 1: The continuum extrapolation ofrk(N) ≡ σk
σ (N) and the comparison with Casimir scalings.

Let us now pause to make the following comment. The decrease of Ceff becomes clear only
above 1 fm, and its possible that this is the main cause for thedifference between our conclusions
and those of [5], where the maximum string length was∼ 0.9 fm.

4. Results : the string tensions in the continuum and the large-N extrapolation

We now use the empirically determined Eq. (2.1) to extract string tensions from string energies
that we measure on a wide range of lattice spacings ranging betweena ≃ 0.2 fm anda ≃ 0.05 fm.
All the strings the we use have a length of at least 1.35 fm. The extrapolation of the ratiosrk ≡σk/σ
to the continuum, and its comparison to the Casimir scaling is shown in Table 1.2 All the continuum
extrapolations had a acceptableχ2/do f except for thek = 2 of SU(6) where we find that our data
is too scattered to be well fit by a smooth fitting ansatz. We proceed to perform two types of large-N
extrapolation. The first is fork = 2 (left panel of Fig. 2) and the second is fork = N/2 (right panel
of the figure). In both cases we present the Casimir scaling prediction in red, and two type of fits,
that either allow or exclude 1/N corrections.

We begin by extrapolatingrk=2 to SU(∞). Since atN = ∞ one expects ther2 = 2 we use the
ansatzr2 = 2− a

N p −
b

N2p with p = 1,2. For p = 1 our fit givesa = 1.51(5) andb = 4.3(2), but
a χ2/do f ≃ 2.2. This high value ofχ2 comes from the data point ofSU(6) which, as mentioned
above, suffers from a low confidence level. To check the sensitivity of the fit to this point, we
drop it from the fit and find an acceptableχ2 with similar values for the fit parametersa,b. When
p = 2, however, we find no acceptable fit, and are led to drop the point with the lowest value of

2The determination of the fundamental tension in these casesis described in [6]
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Figure 2: The extrapolation ofk = 2 (left panel) andk = N/2 (right panel).

N = 4. This results ina = 17.8(3) andb =−150(9) and a still largeχ2/do f ≃ 2.1. Also, the wavy
behaviour of this fit (magenta line), suggests that thep = 2 ansatz is questionable.

Proceeding to extrapolateσk=N/2 to SU(∞), we begin with a cautionary remark. In this extrap-
olation, we use the tension of thek = 4 strings inSU(8), which has a relatively large mass. This
means that while its statistical error is also large, it may suffer from an even larger systematic error.
Nonetheless, we proceed to fit our data with the ansatz

rN/2

N/2 = a+ b
N p with p = 1,2. For p = 1 we

find thata = 0.506(4) andb = 0.68(2) is a very good fit withχ2/do f ≃ 0.27. Also it is interesting
to note thata is in fact consistent with the Casimir scaling prediction. In contrast, thep = 2 best fit
has a highχ2/do f ≃ 2.7 (with a = 0.569(3) andb = 1.75(5)).

5. Near degeneracies in the k-string excited state spectrum
We now use our data to revisit the issue of the near degeneracies in thek-string spectrum that

were seen in [4, 12], with the clear advantage that our new data contains measurements of the string
spectrum for a variety of string lengthsl. We begin by focusing on the operators that couple best
to the lowest states (as determined by our variational calculation), and calculate their overlap onto
particularSU(N) representation. We present the dependence of these overlaps on the string length
for the five lowest states of thek = 2 string inSU(6) (left panel of Fig. 3). This figure tells us that
the ground state is always in the anti-symmetric representation, while the other states may change
their ‘representation content’. In particular, the first excited state is symmetric when the string is
short, and becomes anti-symmetric for longer lengths. The opposite happens for the second excited
state, and a similar pattern is seen for the third and fourth excited states.

To interpret these results we suggest the following simple model. Consider two non interacting
NG free bosonic strings that carry fluxes in irreducibleSU(N) representations, and whose tensions
scale according to Eq. (1.1). This model’s spectrum forSU(6) is presented in the right panel
of Fig. 3,3 where we see that it works well in predicting the switching ofstates as well as the
approximatel at which this occur. We find that this model works also for other values ofN andk.

Finally, note that whenever two levels cross there appears an approximate degeneracy in the
spectrum, which we argue to be the one observed in [4, 12]. To check this, we looked at the

3For a discussion on the excited state spectum of the NG model see [1].
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Figure 3: Left: Overlaps of the five lowest states in thek = 2 spectrum ofSU(6) atβ = 59.40 (a ≃ 0.12 fm)
vs. the string length. In blue(red) are the overlaps onto theantisymmetric(symmetric) representation. Right:
The spectrum of energies vs. the string length forSU(6) andk = 2 of the 2-NG model (see text). As in the
left panel, blue(red) denotes the energies of the antisymmetric(symmetric) representation.

measured energies. Performing the variational calculation in the full basis gives the spectrum that
we show in the left panel of Fig. 4. Performing the variational calculation with only a subspace
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N = 4, k = 2, a√ σ ∼ 0.13109
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Figure 4: Left: The energies of the three lowest states in thek = 2 spectrum ofSU(4) atβ = 50.00 (a≃ 0.06
fm) vs. the string length. Right:Same as in the left panel, but obtained after the projection onto symmetric
(in red) and antisymmetric (in blue) representations. The lines are the predictions of the 2-NG model (see
text), and the vertical line in magenta denotes the string length analyzed in [12].

of operators that belongs to a single representation, we getthe spectra in the right panel of Fig. 4,
where we also plot the prediction of a simple 2-NG model for the lowest two states4. It is now clear
that this model works quite well. Finally, the magenta vertical line denotes the length of the strings
analyzed in [12] and we stress its proximity to the accidental degeneracy point atl ≃ 3/

√
σ .

6. Summary and future prospects
We have calculated energies of closedk-string inSU(N) gauge theories in 2+ 1 dimensions.

We find that provided the strings are longer than∼ 1.4 fm, then the deviations of our data from the

4The string tensions were chosen to fit our data.
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Nambu-Goto (NG) free bosonic string are at most at the level of 0.5%. (This is in contrast to recent
results [5] obtained in theZ4 theory). For shorter strings we see significant deviations,which we
fit and this allows us to control the systematic error involved in neglecting theO(1/l3) corrections
that are sub leading to the Luscher term. Doing so, we extracttensions from the string energies
from a range of lattice spacings and extrapolate the ratiork ≡ σk/σ to the continuum. We find that
rk is 1%−4% higher than the Casimir scaling law. We test different large-N extrapolations forr2

andrN/2 and in both cases find that our data naturally prefers a leading 1/N correction. Finally, a
striking observation about the spectrum of the excited states is that they fall into separate sectors
that correspond to irreducible representations ofSU(N). This demonstrates that the string spectrum
contains information on the states’SU(N) representation, that goes beyond their N-ality.

We stress here that the the results presented in this contribution do not enjoy the same level
of confidence as our formerk = 1 study [6], since there are several systematic errors that we did
not control. The first is the effect of contamination from excited states on the energy estimates
obtained from the correlation functions. Fork = 1 we controlled these by performing double-cosh
fits to our correlations and saw a shift downwards of∼ 1−2 standard deviations, away from the
KKN prediction [6]. Fork > 1 we expect larger contamination from excited states which may push
rk toward Casimir scaling. Work is now in progress to check for the sizeof this shift.

Other systematic errors that we currently investigate include the (k-string)/(k-anti-string) mix-
ing, and the fact that the untracedsmeared Polyakov loops are only approximatelySU(N) matrices.
Treating these issues may improve the overlap of our operators onto the physical states, and will
tighten our control on the classification of the string states according toSU(N) representations.
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