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1. Introduction
In this work we study8J (N) gauge theories iD = 2+ 1 space-time dimensions and focus on

the energies and tensions of closed strings that carry fl8¥ {iN) representations whose N-ality

is larger than one. (For references on related lattice weeksour companion contribution to these
proceedings [1] as well as [2]-[5]). The reason we restrigiselves tdD = 2+ 1 dimensions is
closely related to our motivation in the related study [6here we tested the Karabali-Kim-Nair
(KKN) analytic prediction [7] for the fundamental stringnon g. As a natural continuation to
that work, we now aim to test how accurate is the following KKi¢diction for the tension of a
string in a genera®J (N) representatior.

Co
R

O =0 (1.1)
HereCy is the quadratic Casimir of the representation, @pa= (N?>— 1)/2N is the Casimir of
the fundamental representation. We note here that the aBagemir scaling’ of string tensions is
also predicted by other approaches te Rdimensions (for example see [8]). The KKN prediction
lacks the physics of screening, and we thus take a practaat pf view and regard Eq. (1.1) as an
approximate prediction for the tensions of stakistrings, and for the asymptotic energy per unit
length of excitedk-strings states with flux in an excited representation.

Besides comparing to Eq. (1.1), we are also interested iw#yethek-string energy depends
on the string length (which will reveal its central charge), on the manner in viartioe planar limit
is approached (i.e. whether the correctiond\te- o scale like N or 1/N?), and on a curious
pattern of degeneracies seen in previous studies d-#iteng spectrum.

2. Methodology

We define the gauge theory on a discretized periodic Euclitte@e dimensional space-time
lattice, with spacinga and, typically, withL2L, sites. The action we use is the ordinary Wilson
action, where the bare couplifgjis related to the dimensionful coupling by lima o8 = %. In
the largeN limit, the 't Hooft couplingA = g°N is kept fixed, and so we must scfle= 2N2/A [0
N2 in order to keep the lattice spacing fixed (upaL/N?) corrections). We calculate observables
by performing Monte-Carlo simulations of the Euclideanhpategral, in which we use a mixture
of Kennedy-Pendelton heat bath and over-relaxation steplftheSJ (2) subgroups o8J (N).

We measure the energy of flux tubes closed around a spatia, thom the correlators of
suitably smeared Polyakov loops that have vanishing texaeumomentum [9, 4]. For each Hilbert
space sector of given N-ality we construct lattice operators that couple to states ofNality.
These are given by T, TrUuk-1Tru ... (TruU )k, wherel is the path-ordered product of smeared
links around the spatial torus. We then construct the fulletation matrix and use it to obtain best
estimates for the string states using a variational metipptieal to the transfer matrix = e~
(see for example [9] and references therein).

Our study is logically divided into two. We first investigatiee way thek-string energyE
depends on its length In [6, 1] we have discussed the theoretical possibilit@sH(l ), and we
will not reiterate that discussion here, but rather justtguts conclusion : a natural way to fit our

data for the energy is with
G T
E()=Eis———= © Ele=(0d)’—0ig, (2.1)
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Sringsin SU(N) gauge theoriesin 2+ 1 dimensions: beyond the fundamental representation
Barak Bringoltz

whereEyg is the ground state energy of a closed string in the Nambw-&ahg theory.

For thek = 1 case we found that our data is very well described by thiatangthC, < 0.3. We
now ask whether this situation persists kar 1 strings as well. This will also tell us whether tke
strings belong to the same IR universality class akthd string. We perform these measurements
for J(4) at B = 28.00,50.00, J(5) at B = 80.00, J(6) at B = 59.40,90.00, andSJ(8) at
B =10800,19200. These bare couplings correspond to lattice spacings~00.06,0.08,0.11
fm, depending oM. The string length$ ranged betweer 0.45 fm and~ 3 fm, again depending
on the values oN anda.!

After we obtain an estimate fd#(l) we use it to extract string tensions from string energies
which were measured on a set of lattices with increasinglglisspacings in the range~ 0.05—

0.2 fm. This is done only for strings whose length obéys3/\/0 ~ 1.4— 1.5 fm. This way of
extracting tensions controls the systematic error inviblivethe usual neglect of the sub leading
corrections to the Luscher term. Once we obtain the contimsitiing tensions, we extrapolate our
results to the larg®& limit. This is particularly interesting since there existgontroversy in the
literature with respect to the possibility of havingNL corrections in thé-string tensions [10, 3].

3. Results: length dependence of the k-string energies and their conformal anomaly

In the left panel of Fig. 1 we present the energy ofkhe?2 string forJ (5) at 3 = 80.00. The
plot shows the energy divided lyl (hereo is the fundamental string tension which we obtain in
[1]) vs. the length in physical units,/a. The string tension in lattice units@o = 0.01687412)
which gives a lattice spacing @f~ 0.058 fm, and tells us that our string length stretches from
~ 0.6 fm to~ 1.85 fm. The red line that goes through our data is a fit of the feqn(2.1) which
results in the rati@, /o = 1.524421) andC, = 1.41(7) (the fit is good withy?/dof ~ 3/4). The
coefficientC; is thus much larger than the corresponding onekfer 1, which was 00554139)
for this data [1]. This reflects the fact that the NG predictis a much better approximation for
k=1 than it is fork > 1, which can be easily seen by comparing the left panel of Fig. the
corresponding plot fok = 1 [1].

The results for all the gauge groups that we study are siraitdrcan be encompassed in a
single formula withC, = 3(2). For higher values dof the results are less accurate, but we can still
fit them and find that takin@z = 4.5(2.0) andC, = 5.5(1.5) for k = 3 andk = 4, respectively,
describes all our data. In practice, provided that the lengf our strings obey = 3//0, we see
that the correction term in Eq. (2.1) is at most.&8% contribution to the energy.

We now examine the universality class of the string by fitfiairs of adjacent points in the
left panel of Fig. 1, and in the corresponding data sets farthér values oN andk, with the form
E2 = (akl)2 - ok’—g x Ceft. As the points we fit have larger and larger value$, ahenCgs should
approach the central charge of thstring. In the case df = 1 we have very strong evidence that
Ceit ] (see [6, 1] and references within). In tke- 1 the situation is harder to pin down and
in addition there is a recent prediction [5] suggesting @éat'if" ok/0. We present our results in
the right panel of Fig. 1 for the casbks= 4,5, 6,8 andk = 2, where it is reasonably clear thais
decreases towards 1 Bsicreases. We have similar results foe= 3,4, which are, however, less
accurate due to the larger energies.

IFor more details on the lattice parameters of our field cordigpns see [1].
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Figure 1: Left: Ground state energy of tHe= 2 string inJ(5) and 3 = 80.00. Ouir fit in red, and in
blue(black) the NG(Luscher term) predictions. Righite value ofCqi; (see text) of thek = 2 strings in

U (4,5,6) for B =50.00,80.00,90.00, respectively (lattice spacings presented in the legend

rk(N) r2(4) r2(5) r2(6) r2(8) r3(6) r3(8) r4(8)
Lattice | 1.355323) | 1.527526) | 1.6242(35) | 1.752451) | 1.859063) | 2.1742187) | 2.3725111)
Casimir| 1.3333... 15 1.6 1.7142. .. 1.8 2.1429. .. 2.2857...

Table 1: The continuum extrapolation of(N) = % (N) and the comparison with Casimir scalings.

Let us now pause to make the following comment. The decref€grdecomes clear only
above 1 fm, and its possible that this is the main cause fodifference between our conclusions
and those of [5], where the maximum string length waB.9 fm.

4. Reaults: the string tensionsin the continuum and the large-N extrapolation

We now use the empirically determined Eq. (2.1) to extrasigtensions from string energies
that we measure on a wide range of lattice spacings rangimgebaa ~ 0.2 fm anda ~ 0.05 fm.
All the strings the we use have a length of at lea36Xm. The extrapolation of the ratiog= oix/o
to the continuum, and its comparison to the Casimir scasirsijiown in Table Z.All the continuum
extrapolations had a acceptalé/dof except for thek = 2 of QU (6) where we find that our data
is too scattered to be well fit by a smooth fitting ansatz. Weged to perform two types of large-
extrapolation. The first is fdk = 2 (left panel of Fig. 2) and the second is fo= N/2 (right panel
of the figure). In both cases we present the Casimir scaliadigtion in red, and two type of fits,
that either allow or exclude/N corrections.

We begin by extrapolating—» to J («). Since atN = « one expects the, = 2 we use the
ansatzr =2 — & — % with p=1,2. Forp =1 our fit givesa = 1.51(5) andb = 4.3(2), but
a x2/dof ~ 2.2. This high value of(? comes from the data point &J (6) which, as mentioned
above, suffers from a low confidence level. To check the feitgiof the fit to this point, we
drop it from the fit and find an acceptab@ with similar values for the fit parameteasb. When
p = 2, however, we find no acceptable fit, and are led to drop thet path the lowest value of

2The determination of the fundamental tension in these daskescribed in [6]
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Figure 2: The extrapolation ok = 2 (left panel) and = N/2 (right panel).

N = 4. This results ira= 17.8(3) andb = —150(9) and a still largex?/dof ~ 2.1. Also, the wavy
behaviour of this fit (magenta line), suggests thatpghe 2 ansatz is questionable.

Proceeding to extrapolatg_y » to J (»), we begin with a cautionary remark. In this extrap-
olation, we use the tension of the= 4 strings in9J (8), which has a relatively large mass. This
means that while its statistical error is also large, it mafes from an even larger systematic error.
Nonetheless, we proceed to fit our data with the anrﬁ@z: a+ % with p=1,2. Forp=1we
find thata = 0.506(4) andb = 0.68(2) is a very good fit withy2/dof ~ 0.27. Also it is interesting
to note that is in fact consistent with the Casimir scaling predictiomcontrast, they = 2 best fit
has a highx?/dof ~ 2.7 (with a= 0.569(3) andb = 1.75(5)).

5. Near degeneraciesin the k-string excited state spectrum

We now use our data to revisit the issue of the near degempsracthek-string spectrum that
were seen in [4, 12], with the clear advantage that our nevdattains measurements of the string
spectrum for a variety of string lengths We begin by focusing on the operators that couple best
to the lowest states (as determined by our variational tion), and calculate their overlap onto
particularSJ (N) representation. We present the dependence of these averiape string length
for the five lowest states of tHe= 2 string inSJ (6) (left panel of Fig. 3). This figure tells us that
the ground state is always in the anti-symmetric repretientavhile the other states may change
their ‘representation content’. In particular, the firstiéad state is symmetric when the string is
short, and becomes anti-symmetric for longer lengths. Ppesite happens for the second excited
state, and a similar pattern is seen for the third and foutited states.

To interpret these results we suggest the following simpldeh Consider two non interacting
NG free bosonic strings that carry fluxes in irreduciBl&(N) representations, and whose tensions
scale according to Eq. (1.1). This model's spectrum301(6) is presented in the right panel
of Fig. 33 where we see that it works well in predicting the switchingstites as well as the
approximatd at which this occur. We find that this model works also for otredues ofN andk.

Finally, note that whenever two levels cross there appeaaepproximate degeneracy in the
spectrum, which we argue to be the one observed in [4, 12]. h&elcthis, we looked at the

3For a discussion on the excited state spectum of the NG meddll§
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Figure3: Left: Overlaps of the five lowest states in the- 2 spectrum 08U (6) at 3 = 59.40 (a~ 0.12 fm)
vs. the string length. In blue(red) are the overlaps ontatitessymmetric(symmetric) representation. Right:
The spectrum of energies vs. the string length3d(6) andk = 2 of the 2-NG model (see text). As in the
left panel, blue(red) denotes the energies of the antisyiniot®/mmetric) representation.

measured energies. Performing the variational calcuatighe full basis gives the spectrum that
we show in the left panel of Fig. 4. Performing the variatioceculation with only a subspace

N=4,k=2,aVo000.13109 N=4,k=2 a/ 00013109

115 é 2‘.5 C": 315 4‘1 45
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Figure4: Left: The energies of the three lowest states inkhe2 spectrum oBU (4) at 3 = 50.00 (a~ 0.06

fm) vs. the string length. RighBame as in the left panel, but obtained after the projectitta symmetric

(in red) and antisymmetric (in blue) representations. Tihesl are the predictions of the 2-NG model (see

text), and the vertical line in magenta denotes the stringtleanalyzed in [12].

of operators that belongs to a single representation, wthgetpectra in the right panel of Fig. 4,
where we also plot the prediction of a simple 2-NG model ferltwest two statés It is now clear
that this model works quite well. Finally, the magenta attiine denotes the length of the strings
analyzed in [12] and we stress its proximity to the accidesiegeneracy point dt~ 3/./0.
6. Summary and future prospects

We have calculated energies of clodestring inSJ (N) gauge theories in 2 1 dimensions.
We find that provided the strings are longer thad.4 fm, then the deviations of our data from the

4The string tensions were chosen to fit our data.
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Nambu-Goto (NG) free bosonic string are at most at the leM@15%6. (This is in contrast to recent
results [5] obtained in th&, theory). For shorter strings we see significant deviatiartgch we

fit and this allows us to control the systematic error invdlie neglecting thed(1/1%) corrections
that are sub leading to the Luscher term. Doing so, we exteasions from the string energies
from a range of lattice spacings and extrapolate the ratio oy /o to the continuum. We find that
rx is 1%— 4% higher than the Casimir scaling law. We test differergday extrapolations for,
andry, and in both cases find that our data naturally prefers a Igat}iN correction. Finally, a
striking observation about the spectrum of the excitecestat that they fall into separate sectors
that correspond to irreducible representationSWbfN). This demonstrates that the string spectrum
contains information on the state8J (N) representation, that goes beyond their N-ality.

We stress here that the the results presented in this cotmbnbdo not enjoy the same level
of confidence as our formér= 1 study [6], since there are several systematic errors tbadid/
not control. The first is the effect of contamination from ited states on the energy estimates
obtained from the correlation functions. Hoe 1 we controlled these by performing double-cosh
fits to our correlations and saw a shift downwards-of — 2 standard deviations, away from the
KKN prediction [6]. Fork > 1 we expect larger contamination from excited states whial push
rx toward Casimir scaling. Work is now in progress to check for the siizthis shift.

Other systematic errors that we currently investigateuithelthe K-string)/(k-anti-string) mix-
ing, and the fact that the untracedeared Polyakov loops are only approximateBy (N) matrices.
Treating these issues may improve the overlap of our opsrattto the physical states, and will
tighten our control on the classification of the string statecording t&J (N) representations.
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