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1. Introduction

In previous studies [1,2] on the vacuum dynamics of pure non-abelian gauge theories we found
that the deconfinement temperature depends on the strength of an external abelian chromomagnetic
field. We also verified that the same effect is not present in the case of abelian gauge theories, sug-
gesting that it could be linked to the non-abelian nature of the gauge group. In our opinion the
dependence of the deconfinement temperature on applied external fields is a consequence of the
dynamics underlying color confinement and therefore, apartfrom possible phenomenological im-
plications, such an effect could shed light on confinement/deconfinement mechanisms. On these
premises it is important to test if the effect continues to hold and how it qualitatively changes when
switching on fermionic degrees of freedom and on that groundto investigate the dependence of
the deconfinement temperature on the strength of an externalabelian chromomagnetic field in the
case of full QCD with two flavors. Besides another relevant issue regards the relation between
deconfinement and chiral symmetry restoration. As it is wellknown, the two phenomena appear to
be coincident in ordinary QCD, while they are not so in different theories (like QCD with adjoint
fermions [3–5]). Even if a simple explanation of this fact isstill lacking it could be strictly con-
nected to the very dynamics of color confinement. A contribution towards a clear understanding of
this phenomenon could be to study whether it is stable against the variation of external parameters.
In the present we investigated whether the deconfinement temperature depends on the strength of an
external abelian chromomagnetic field and whether deconfinement and chiral symmetry restoration
for QCD with two flavors coincide even in presence of a constant chromomagnetic field.

2. A constant chromomagnetic field on the lattice

QCD dynamics in presence of a time-independent background field at finite temperature can
be studied [6–8] by means of the free energy functional

F [~Aext] = − 1
Lt

ln

{

ZT [~Aext]

ZT [0]

}

. (2.1)

with ZT the thermal partition functional

ZT

[

~Aext
]

=

∫

Uk(Lt ,~x)=Uk(0,~x)=Uext
k (~x)

DU Dψ Dψ̄e−(SW+SF)

=
∫

Uk(Lt ,~x)=Uk(0,~x)=Uext
k (~x)

DUe−SW detM . (2.2)

The functional integration is performed over the lattice links, but constraining the spatial links
belonging to a given time slice (sayxt = 0) to be

Uk(~x,xt = 0) = Uext
k (~x) , (k = 1,2,3) , (2.3)

Uext
k (~x) being the elementary parallel transports corresponding tothe external continuum gauge

potential. In the previous equations~Aext(~x) is the continuum gauge potential of the external static
background field,SW the standard pure gauge Wilson action,SF is the fermion action andM is the
fermionic matrix. The spatial links are constrained to the values corresponding to the lattice version
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of the external background field, whereas the fermionic fields are not constrained. In the case of a
static background field which does not vanish at infinity we must also impose that, for each time
slicext 6= 0, spatial links exiting from sites belonging to the spatialboundaries are fixed according
to eq. (2.3). In the continuum this last condition amounts tothe requirement that fluctuations over
the background field vanish at infinity.

We compute by lattice simulations the derivativeF ′ with respect to the inverse gauge coupling

F ′(β ) =
∂F (β )

∂β
=

〈

∑
x,µ<ν

1
3

ReTrUµν(x)

〉

0

−
〈

∑
x,µ<ν

1
3

ReTrUµν(x)

〉

~Aext

, (2.4)

where the subscripts on the averages indicate the value of the external field. Only unconstrained
plaquette are taken into account in the sum in eq. (2.4).

In the present work we have considered a static constant abelian chromomagnetic field. The
continuum gauge potential giving rise to a static constant abelian chromomagnetic field directed
along spatial direction̂3 and direction ˜a in the color space can be written in the following form:

~Aext
a (~x) = ~Aext(~x)δa,ã , Aext

k (~x) = δk,2x1H . (2.5)

In SU(3) lattice gauge theory the constrained lattice links(see eq. (2.3)) corresponding to the con-
tinuum gauge potential eq. (2.5) are (choosing ˜a = 3, i.e. abelian chromomagnetic field along
direction3̂ in color space)

Uext
1 (~x) = Uext

3 (~x) = 1,

Uext
2 (~x) =







exp(i agHx1
2 ) 0 0

0 exp(−i agHx1
2 ) 0

0 0 1






.

(2.6)

Since our lattice has the topology of a torus, the magnetic field turns out to be quantized

a2gH
2

=
2π
L1

next, next integer. (2.7)

In the followingnext will be used to parameterize the external field strength.

3. Deconfinement temperature and critical field strength

Numerical simulations have been performed on 323×8 and 64×322×8 lattices, using com-
puter facilities at the INFN apeNEXT computing center in Rome. A slight modified version of the
standard HMC R-algorithm [9] has been adopted to simulate QCD with two degenerate flavors of
staggered fermions of massamq = 0.075. The critical gauge coupling has been determined from
the position of the peak inF ′[~Aext] (eq. (2.4)), the derivative of the free energy with respect to the
gauge couplingβ , as a function ofβ . In figure 1 we show an example ofF ′ measured fornext = 1
on a 323 × 8 lattice. In the same figure we display also the chiral condensate〈ψ̄ψ〉. We can see
that the peak in the derivative of the free energy corresponds to the drop in the chiral condensate,
the latter being a signal of the transition leading to chiralsymmetry restoration. The determination
of the critical coupling from the peak of the derivative of the free energy is also consistent with
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Figure 1: The derivative of the free energy eq. (2.4) with respect to the gauge coupling (left axis, blue
circles), and the chiral condensate (right axis, red squares) versusβ . The vertical line represents the position
of the peak in the derivative of the free energy.

the determinations obtained by studying the Polyakov and the plaquette susceptibility. Therefore
we may conclude that the critical coupling of the phase transition can be located by looking at the
peak of the derivative of the free energy and, as in the case ofzero external field and within sta-
tistical uncertainties, a single transition seems to be present where both deconfinement and chiral
symmetry restoration take place.

We have then varied the strength of the external field by tuning up the parameternext and
searched for the phase transition signalled by the peak of the derivative of the free energy finding
that the critical coupling shifts towards lower values by increasing the external field strength. On the
other hand we have found that an abelian monopole backgroundfield does not have any influence
on the critical coupling. Indeed we have performed numerical simulations in presence of an abelian
monopole background field with monopole chargenmon= 10 (again for 2 staggered flavors QCD of
massamq = 0.075). The critical coupling has been estimated to beβc = 5.4873(192) consistently
with the critical couplingβc = 5.495(25) obtained without any external field.

Once the critical couplings in correspondence of several values of the external abelian chro-
momagnetic field have been obtained the corresponding critical temperature is given by

Tc =
1

a(βc,mq)Lt
, (3.1)

whereLt is the lattice temporal size anda(βc,mq) is the lattice spacing at the given critical coupling
βc. We have to face now the problem of fixing the physical scale. In order to reduce the systematic
effects involved in this procedure we consider the ratios

Tc(gH)

Tc
vs.

√
gH
Tc

(3.2)
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Figure 2: The critical temperatureTc(gH) at a given strength of the chromomagnetic background field
in units of the critical temperatureTc without external field versus the square root of the strengthof the
background field in the same units. Red circles are obtained by adopting the improved scaling function. The
blue line is the linear best fit. The blue circle on the horizontal axis is the linear extrapolated values for
the critical background field. Green squares are obtained byadopting the 2-loop scaling function. The blue
dashed line is the linear best fit. The blue square on the horizontal axis is the linear extrapolated values for
the critical field.

whereTc is the critical temperature without external field. The above quantities can be obtained
once the ratio of the lattice spacings at the respective couplings is known. A rough estimate of this
ratio can be inferred by using the 2-loop scaling functionf (g2)

f (g2) = (b0g2)−b1/2b2
0 exp

(

− 1
2b0g2

)

(3.3)

with

b0 =
1

16π2

[

11
Nc

3
− 2

3
Nf

]

b1 =

(

1
16π2

)2[

34
3

N2
c −

(

10
3

Nc+
N2

c −1
Nc

)

Nf

]

;

(3.4)

Nc is the number of colors andNf is the number of flavors. A better estimate could be obtained by
exploiting an improved scaling functionf (g2)(1+c2â(g)2 +c4â(g)4). We do not know, however,
the values ofc2 andc4 for Nf = 2. In a first approximation we will fixc2 andc4 to their quenched
values [10,11].

In figure 2 the quantities reported in eq. (3.2) are displayedfor both choices described above,
i.e. 2-loop asymptotic scaling and improved scaling. Our main result is that, even in presence of
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Figure 3: The chiral condensate versusβ in correspondence of some values of the constant chromomagnetic
background field. In the inset the region corresponding to the phase transition has been magnified.

dynamical quarks, the critical temperature decreases withthe strength of the chromomagnetic field.
Furthermore a linear fit to our data can be extrapolated to very low temperatures leading to the pre-
diction of a critical field strength above which strongly interacting matter should be deconfined at
all temperatures. Nevertheless, as can be appreciated fromfigure 2, the exact value of the critical
field strength is largely dependent on the choice of the physical scale: assuming the 2-loop scal-
ing function we obtain

√
gHc/Tc = 26.8(5), while using the improved scaling function we obtain√

gHc/Tc == 4.29(10); if the deconfinement temperature at zero field strength is taken to be of the
order of 170 MeV, that means

√
gHc in the range 0.7−4.5 GeV. Hence in order to get a reliable

estimate of the critical field strength requires to get a morereliable estimate of the physical scale
of our lattices.

To conclude this section we consider our measurements of thechiral condensate. In figure 3
we display the chiral condensate versus the gauge coupling in correspondence of some values of
the external field strength. Numerical data show that, at least in the critical region, the value of the
chiral condensate depends on the strength of the applied field. Similar results have been found in
ref. [12].

4. Summary and Conclusions

We have studied how a constant chromomagnetic field influences the QCD dynamics. By fo-
cusing on the finite temperature theory we have found that, analogously to what happens in the
pure gauge theory [2], the critical temperature depends on the strength of the constant chromomag-
netic background field. More specifically, the critical temperature decreases as the external field
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is increased and, as an extrapolation of our results, for strong enough field strengths the system is
always deconfined. A rough estimate of this critical field strength turns out to be of the order of
1 GeV, which is a typical QCD scale [13].

What is more, by comparing the critical couplings determined from the derivative of the free
energy functional with those determined from the susceptibility of the chiral condensate and of the
Polyakov loop we have ascertained that, even in presence of an external chromomagnetic back-
ground field and at least up to the field strengths explored in the present work, the critical temper-
atures where deconfinement and chiral symmetry restorationtake place coincide within errors.

Another intriguing aspect that deserves further studies isthe dependence of the chiral conden-
sate on the chromomagnetic field strength.
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