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1. Introduction

Color confinement is not yet fully understood from QCD first principles but lattice simulations
have anyway provided evidence for a deconfining transition taking place where other important
phenomena happen, like chiral symmetry restoration.

In this paper we study how deconfinement at finite chemical potential µ compares to what
happens atµ = 0 and how it is related to the restoration of the chiral symmetry in the QCD phase
diagram: this interplay could help clarifying the very nature of confinement. The topic has already
been studied in previous literature: in particular preliminary results about deconfinement at high
densities and low temperatures have been obtained in Ref. [1], an analysis in the largeNc limit has
been performed in Ref. [2], while the relationship among thechiral transition, confinement, and
other observables such as the topological charge susceptibility has been investigated in Ref. [3].

However previous studies have mainly used the expectation value of the Polyakov loop to de-
tect the deconfinement transition, a parameter not suitablefor the theory with dynamical fermions,
where the center symmetry to which it is related is already explicitely broken. For that reason in
the present study we look for different order parameters defined in a specific model of confinement
but valid also in full QCD.

The framework is that of the dual superconducting model of the QCD vacuum [4, 5, 6], where
confinement is associated to the breaking of an abelian dual symmetry and to the condensation
of magnetic charges. In this context we may use the disorder parameter〈M 〉1developed by the
Pisa group [7, 8], which consists in the expectation value ofan operator that creates a magnetic
monopole.〈M 〉 has been shown to be a good probe for color confinement both in pure gauge [9,
10] and in full QCD [11, 12]: by means of this parameter we are going to look to the confining
properties of the various phases in the QCD phase diagram.

Since the sign problem makes a numerical study of finite density QCD very difficult, here we
restrict ourselves to QCD with two colors, where such a problem is missing because the determinant
of the fermionic matrix is real. In principle no significant differences are expected.

We have simulated 8 flavours of staggered fermions of mass ˆmq = 0.07 using an exact HMC
algorithm. We have usedLs×Lt lattices withLt = 6 andLs = 8,12,16.

A full account of our results has been published in [13].

2. The disorder parameter〈M 〉

The magnetically charged operatorM (~x, t) creates a magnetic monopole in~x, t by shifting the
field by the classical vector potential of a monopole,~b⊥(~x−~y), and can be written [8] asM (~x, t) =

exp
[

i
e

∫

d3x ~E⊥(~y, t)~b⊥(~y−~x)
]

, where the electric field~E⊥(~y, t) is the momentum conjugate to the
quantum vector potential. Its expectation value, detecting dual superconductivity, can be expressed
on the lattice as〈M 〉 = Z̃/Z, whereZ is the normal QCD partition function, whilẽZ is obtained
from Z by a change in the pure gauge actionSG → S̃G: a monopole field is added to the temporal
plaquettes at the monopole creation timeslice.

1We change the usual notation for the disorder operator,〈µ〉, in order to avoid confusion with the notation for the
chemical potential.
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The numerical study of a ratio of two different partition functions such as〈M 〉 is very difficult:
that is why we will rather study susceptibilities of the disorder parameter, from which the behaviour
of 〈M 〉 at the phase transition can be inferred.

For instance, if we are interested in〈M 〉(β ), as when studying theµ = 0 phase transition, we
look to [7, 8, 9]

ρ =
∂

∂β
ln〈M 〉 =

∂
∂β

ln Z̃−
∂

∂β
lnZ = 〈S〉S−〈S̃〉S̃ (2.1)

where the action used for Monte Carlo sampling is indicated by the subscript.
At finite temperature and density we are interested instead in the behaviour of〈M 〉 at fixedβ ,

i.e. fixed temperature,2 and variableµ̂ ≡ aµ . For that reason we look at

ρD ≡
∂

∂ µ̂
ln〈M 〉=

∂ ln Z̃
∂ µ̂

−
∂ lnZ
∂ µ̂

= 〈Nq〉S̃−〈Nq〉S (2.2)

whereNq is the quark number operator,〈Nq〉 =
〈

Tr
(

∂M
∂ µ̂ ·M−1

)〉

, andM is the fermion matrix.3

The disorder parameter can be recovered as the integral of (2.1) with the initial condition
〈M 〉 = 1 at β = 0: in particular〈M 〉 abruptly falls at the phase transition ifρ has here a sharp
negative peak and〈M 〉 is exactly zero beyond the deconfining phase transition if the peak diverges
in the thermodynamical limit. A similar behavior is expected for ρD if a deconfining transition is
met atµ 6= 0 starting from a point in the confined phase atµ = 0.

The two susceptibilitiesρ andρD do not only locate the position of the critical superconducting
transition line, but also may be used to detect its tangent. Actually in theβ − µ̂ plane the gradient
~∇〈M 〉 =

(

∂ 〈M 〉
∂β , ∂ 〈M 〉

∂ µ̂

)

= (ρ , ρD)〈M 〉, is orthogonal to the critical line, whose slope is then

equal to−ρD/ρ .

3. Numerical results

3.1 The deconfining transition at zero chemical potential

We will first check the coincidence of the deconfining and chiral breaking transitions atµ = 0.
In Fig. 1 [left] we show the peaks ofχc, the disconnected part of the chiral susceptibility,χL, the
Polyakov loop susceptibility, andχP, the plaquette susceptibility. Our estimate for the location
of the transition (from a fit to the chiral susceptibility) isβc = 1.582(2), to be compared to those
obtained by fitting the Polyakov loop susceptibility (βL = 1.587(4)) and the plaquette susceptibility
(βP = 1.575(5)). ρ (Fig. 1 [right]) displays a peak at the same coupling, hence we can state that at
µ = 0 deconfinement and the chiral restoration coincide.

3.2 The deconfining transition at non zero chemical potential

At fixed β we look to the behaviour of〈M 〉 as a function ofµ̂ by means ofρD. We have
considered only values ofβ belowβc(µ̂ = 0), in particularβ = 1.50 andβ = 1.55: in this case we

2We remind thatβ is related to the temperature viaT = 1/(Lta(β )) whereLt is the lattice temporal extension.
3An additional factor 2 is actually needed for our case with 8 staggered flavors.
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Figure 1: Plaquette, Polyakov and chiral susceptibilities on the 163×6 lattice (normalized data) [left].ρ
parameter [right].

know that〈M 〉 6= 0 at µ̂ = 0 and we expect to meet a phase transition because the (pseudo)critical
temperature lowers with increasing chemical potential. The lowest value ofT(β ) examined, from
a rough two-loop estimate of theβ -function, corresponds toT/Tc(µ = 0) ∼ a(β = 1.582)/a(β =

1.5) ∼ 0.4. In Fig. 2 [left] we show the chiral susceptibility on a 163 ×6 lattice atβ = 1.55 and
β = 1.50. A fit locates the peak positions, that is the (pseudo)critical µ̂ corresponding to chiral
restoration; we obtain̂µc(β = 1.50) = 0.340(10) andµ̂c(β = 1.55) = 0.215(10). In Fig. 2 [right]
we show insteadρD as a function ofµ̂ at the same values ofβ and on various lattice sizes. For
small chemical potentialsρD is independent of the lattice size and practically vanishing, while at
the chiral transition it has a sharp negative peak deeper anddeeper as the spatial size is increased.
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Figure 2: Chiral susceptibility peaks [left] vsρD peaks [right] at differentβ ’s. Vertical bands correspond to
theµc derived from the chiral susceptibility.

3.3 The transition line

Having collected different locations of the deconfinement (chiral transition) line, we can fit
the dependenceβc(µ) in the wholeβ − µ̂ plane. With a quadratic fitβc(µ̂) = A+ Bµ̂2, we get
A = 1.5828(16), B = −0.071(4) and χ2/d.o.f. = 0.26. The good value ofχ2/d.o.f. tells that a
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parabolic behavior fits well the critical line down toT/Tc ∼ 0.4; indeed a quartic term̂µ4 has a
coefficient compatible with zero. The estimated location ofthe (pseudo)critical points is shown in
Fig. 3 together with the fitted transition line.

Ls βc µc

83×6 1.584(2) 0

123×6 1.587(2) 0

163×6 1.582(2) 0

163×6 1.568(2) 0.15

83×6 1.55 0.222(10)

163×6 1.55 0.215(10)

83×6 1.5 0.325(10)

123×6 1.5 0.349(15)

163×6 1.5 0.342(10)

Figure 3: Chiral transition line (red) vs superconducting transition line (green) with error ranges [left]
extracted from data of table [right].

The ratio−ρD/ρ at the transition point has been used as an evaluator of the slope of the critical
line (see Fig. 4), as claimed in Section 2: a good agreement with the slope of the fitted transition
line in theβ − µ̂ plane can be appreciated.
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Figure 4: ρ andρD atβ = 1.5 on a 16×6 lattice [left]. From this we compute−ρD/ρ and draw the tangent
on the transition line [right]. A nice agreement (within onestandard deviation) can be appreciated

We can therefore draw two important conclusions from our results: dual superconductivity
(confinement) disappears in presence of a critical density of baryonic matter; moreover the criti-
cal line in theT − µ plane corresponding to deconfinement coincides, at least within our present
uncertainties, with the chiral transition line.
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3.4 A few remarks on saturation

Due to the Pauli exclusion principle, we cannot place more than one fermion with given quan-
tum numbers per lattice site: when this limit is saturated fermion propagation gets quenched and the
theory becomes equivalent to a pure gauge theory. Saturation is then an unphysical lattice artifact
which may invalidate numerical results, and we need to be very careful in locating its onset.

We have looked to saturation effects atβ = 1.55. In Fig. 5 [left] we show the behaviour of
some observables as a function ofµ̂ up toµ̂ = 1.6. Forµ̂ slightly aboveµ̂c the fermion density rises
roughly with a cubic dependence in the chemical potential, as expected for a gas of free fermions,
but then it saturates, departing from the cubic behaviour from µ̂ ∼ 0.6−0.8 on. Also the Polyakov
loop stops rising at a similar value ofµ̂ , and then drops down; in the same region the plaquette falls
to its quenched value. The full saturation is reached forµ̂ ∼ 1.4−1.6.

The susceptibilities of the disorder parameter (Fig. 5 [right]) display a positive unphysical peak
at µ̂ ∼ 0.7 following the negative peak atµ̂ ∼ 0.3 which corresponds to the physical deconfinement
transition. That means that the disorder parameter〈M 〉, at first dropping to zero thus indicating
deconfinement, then rises again due to saturation: actuallythe “saturation transition” leads to the
SU(2) pure gauge theory, which atβ = 1.55 andLt = 6 is confined.

Even if the saturation transition atµ̂ ∼ 0.7 is well separated from the physical transition at
µ̂ ∼ 0.3, we notice that the “saturation line” in theβ − µ̂ plane has a positive slope (−ρD/ρ from
the saturation peaks of Fig. 5 [right] is greater than zero).That means that at lowerβ the saturation
transition could happen at lower values ofµ̂ which added to the fact that the physicalµ̂c with
decreasingβ , can easily cause an overlap of the two transitions, physical and unphysical, at lower
values ofβ (Fig. 6).

Therefore one should be careful about the possible effects of Pauli blocking on the study of
finite density QCD in the strong coupling regime. The warningis general even if the situation may
depend on the temporal extentLt of the lattice as well on the number of flavors and colors.
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Figure 5: Effects of Pauli blocking: as the fermion number saturates different observables indicate the onset
of a “quenched” phase [left].ρ andρD individuate the unphysical transition with peaks of different sign
(−ρD/ρ > 0⇒ positive slope for the critical line) [right].
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Figure 6: Physical transition line (continuous) vs unphysical saturation line (dashed) [left]: atβ = 1.45 the
saturation prevents a deep peak forρD to form as for greater values ofβ [right].

4. Conclusions

We have shown how a finite density of baryonic matter induces deconfinement and that, in the
region explored, the deconfinement transition coincides with chiral symmetry restoration also at
µ 6= 0. Furthermore we have given a general warning on the possible effect of Pauli saturation on
the study of the QCD phase diagram at lowβ .
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