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1. Introduction

Magnetic monopolesl] and center vortices?] are widely believed to be the most important
degrees of freedom for confinement in Yang Mills theories.

Plausibility arguments suggest that magnetic monopole condensation implies a dual Meissner
effect which pushes out of the vacuum the colour field and gives the well-known physical picture of
confinement in terms of dual Abrikosov vortices describing the confining strings joining the quark
sources. Considerable evidence for this dual Meissner effect has been accumulated on the lattice
[3], including the definition of a disorder parameter demonstrating the condensation of magnetic
monopole below the deconfining temperatute [

Center vortices are string-like excitations formed out of the center of the gauge group which
are expected to encode all the infrared physics of confinenie®].] When they percolate?],
produce a very efficient disordering mechanism which could lead to the area law decay of large
Wilson loops.

In most YM models the phase with magnetic monopole condensation coincides with that
where center vortices percolate, thus it is not clear which of these two properties is most directly in-
volved in producing confinement, or, to be more precise, the area law decay of large Wilson loops.
There are many open, intertwined questions about the validity of these confinement mechanisms.
In particular, is it possible to derive monopole condensation from percolation of center vortices or
vice versa? Are both mechanisms necessary for confinement? are they also sufficient?

In this talk | try to answer these questions by studying a particularly simple class of 3D gauge
models, which can be thought of as duals of Q-state Potts models. In these models the confining
mechanisms can be easily identified in some specific geometric properties of the random graphs
associated to the configurations of the Q-state Potts models. In particular it will be evident that the
percolation of center vortices implies the condensation of magnetic monopoles. On the contrary, it
is pointed out that when Q < 1 the magnetic monopole condensation is not necessarily associated
to the percolation of center vortices: it is demonstrated through a numerical experiment that there
is a vacuum state in which, although the magnetic monopoles condense, quark sources are not
confined, because large Wilson loops decay exponentially with the perimeter instead of the area:
It is also shown that in this theory there is a confining vacuum only when the magnetic monopole
condensation is associated to the percolation of center vortices.

The contents of this contribution are as follows. In the next Section the main properties of the
Q-state Potts model and of its gauge dual are described with a particular emphasis on the definition
of Wilson loop, which plays an essential role in the studies of confinement. In the following Section
the nature of the vacua of these gauge duals in the rarg®@: 1 and the salient features of the
phase diagram are discussed. In Section 4 a local Monte Carlo algorithm for simulating Potts
models in the range & Q < 1 is presented. Finally, in the last Section, some numerical results
generated with this algorithm are reported.

2. Q state Potts model and its dual

The Hamiltonian of the (ferromagnetic) Q-state Potts model s, for Q intelger- 3 ;) 6,
where the site variable; takes the values; = 1,2,...,Q, with (i j) ranging over the links of an
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arbitrary lattice or grapi. This model is symmetric undé&,, the group of permutations @J el-
ements. The canonical partition functidn=y (4, e BH can be rewritten in the Fortuin Kasteleyn
(FK) random cluster representation:

Z= G%AWG = %Q(b, oVQe | (2.1)

wherev = &® — 1 and the summation is over all spanning subgrapls vk = V° QC is their weight
expressed in terms of the numleof edges ofG, called bonds, and the numbebnf connected
components, called FK cluster§(b,c) is their multiplicity. This representation now defines a
model for any real or comple®, which acts as the fugacity controlling the number of FK clusters.
WhenA is a three-dimensional lattice, the FK random cluster representation is also useful to
define a gauge dual of this spin model (for any comp®x The gauge dual lives in the dual
lattice A. The most basic observables of any gauge model are the Wilson loops. In the present case
these are associated to the closed pathg\. For any spanning subgraC A the Wilson loop
W, measures the topological entanglement betweandG. More precisely we attribute to the
Wilson loopW,(G) the value 1 if no FK cluster o6 is linked toy, otherwise we sétV,(G) = 0.
The vacuum expectation value\M, is defined accordingly:

(W) = bzwy(c;)n(b, c)\VWQt/Z . (2.2)

In the special cases whe€@= 2,3,... this definition coincides with the one obtained by apply-
ing the usual Kramers-Wannier duality, provided one defines the topological linking as a winding
moduloQ [8]. The gauge theory dual 1@ = 1 Potts model, corresponding to random percolation,
has been studied in detail iB][ In particular it has been shown that, although the gauge group
is trivial, it behaves like a full-fledged gauge theory with a confining vacuum (corresponding to
the percolating phase), a string tension having a well-behaved continuum limit, a non trivial glue-
ball spectrum 10] and a deconfinement transition at a well determined temperature. In this talk |
describe some new features of this kind of gauge models in the raage @ 1.

3. Confining vacua

Wilson loops provide us with a fundamental tool for a precise definition of confinement in a
pure gauge theory. A confining phase is expected to show up in an area law decay for the vacuum
expectation value of large Wilson loofd/,). This exactly means that jfis scaled up keeping its
shape fixed and increasing the arfeaf the encircled minimal surface, thew,) O e 9A where
o defines the string tension.

For a generi® > 0 one expects two kinds of vacua, depending on the valye ¥¥henp is
small enough, the system is in a symmetric vacuum, characterised by the formation of FK clusters
of finite size. If one probes this vacuum with Wilson loops of size much larger than the typical
dimension of these loops, one finds a perimeter law dedgy [ e PI" (|y] is the perimeter of
the loop), the reason being that the only clusters that can be féit, are those near the closed
pathy € A Whenp is larger than a threshold valye which depends on the kind of lattieg the
S, symmetry of the model is spontaneously broken and the corresponding vacuum is characterised
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Figure 1: A schematic view of the phase diagram of gauge Q-state Potts model. The solid line denotes the
bulk transition corresponding to the condensation of magnetic monopoles. The dashed line, corresponding
to the vanishing of the string tension, does not imply any bulk transitions.

by the formation of an infinite, percolating, FK clus®s C G. The spin fieldo; associated to

the sites of the latticé\ is , in all respects, the disorder parameter of the dual gauge theory and
the formation of an infinite, percolating, cluster is a direct sign of the condensation of magnetic
monopoles, i.éo;) # 0. Itis clear that in this case the number of path&gfpiercing the minimal
surface encircled by grows with its ared, therefore one is tempted to argue that large Wilson
loops obey an area law. Note however that the pkhéeels only those piercing paths which are
closed thus in order to conclude for a confining vacuum one has to assume that also the subgraph
¢ composed by the circuits @ has got an infinite compone#t, C % for f > ;. This has been
demonstrated through numerical simulations only wden 1 [11, 9]. For lesser values this is not
necessarily true.

Actually there is a very simple argument showing that, keeping constant the mean number of
bonds(b), the size ofé or, more precisely, the numbbg of bonds belonging t& is a decreasing
function ofQ and vanishes in the lim® — 0. In factQ is the cluster fugacity of the system: when
Q decreases, so does the number of clusterShe only way to reduce is to addbridges, i.e.
bonds that join otherwise disconnected clusters. Now the total number of bagttse sum ob,,.
bonds belonging t& (i.e. to circuits) and ob,, bridges, i.e.b = b, +b,, whereG = ¢ U %,
therefore a growth of the bridges keepimgonstant implies decreasing lof, g.e.d.

We note, as a side remark, that there is a general relationship between the bonds of the two

kinds:

>ﬂ+< v+l

(by b<,f>T N; (3.1)

this is true for any Q-state Potts model on an arbitrary graph Milinks [12]. In the special case
of two-dimensional, infinite square lattice at the transition point \/Q) the self-duality of the
model requiresb) = % thus at criticality we have., = NW\QD' This exact result can be used
as a check of the Monte Carlo algorithm described in the next Section.
The reduction of closed paths @sdecreases suggests, fgrand 8 — B; small enough, that
the subse®” does not longer percolate even in the phase where the symmetry is spontaneously
broken. For instance, in the lim@,v — 0 with the ratiow = v/Q held fixed [L3] the surviving
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configurations are spanning subgraphs not containing any circuit®; £e0, hence in a 3D lattice
W,(G) =1,V yandG and theQ = 0 dual gauge theory is trivial.

The above remarks suggest that wiggr 1 is small enough, the standard non-confining vac-
uum, corresponding to the symmetric phase of the Potts model, is separated from a truly confining
vacuum, wher&’, the subgraph of circuits, holds an infinite component, by an intermediate vacuum
characterised by the condensation of magnetic monopoles (hence by the formation of an infinite,
percolating FK cluster) which however is not confining, because the closed paths, corresponding to
center vortices, form a dilute gas of loops embedded in the infinite cluster rather than a connected
skein. A sketch of the expected phase diagram of the 3D Potts model in thesmaglbn is drawn
in Fig.1.

4. A Monte Carlo algorithm for Q<1 Potts models

The non-local cluster algorithm of Swendsen and Wah§ and its generalisation to non
integerQ [15] is applicable only foiQ > 1. In order to study the region€ Q < 1 we are interested
in we have to resort to some local Monte Carlo algoritt®, [L7]. | describe here a variant of the
method described inl[/] which can be implemented in an efficient way and works only when
0<Q<L

First, divide the interval0, 1] in three part&,b—a,1— b, wherea andb > a > 0 are suitable
functions of 3 andQ, to be determined later. Then apply the following recursive procedure that
generates a Markov sequence of spanning subgraphs G — G("*1) — . of an arbitrary
lattice A\:

i) Pick a link¢ € A and draw a uniformly distributed random numbex @, < 1;

ii) create or erase a bond on the lih&ccording to the following rules: (a) put a bond if< a;

(b) erase any bond if, > b; (c) in the remaining cas@ < r; < b) put a bond only if it is a bridge,
i. e. only if it connects two otherwise disjoint clusters.

The Markov chain generated in this way forms an ergodic trajectory in the space of con-
figurations of the Q-state Potts model. Requiring detailed balance with respect the equilibrium
distribution yieldsa=1—e# = pandb = Q@ pTp- The inequalitya < bimpliesQ < 1%,

This Monte Carlo method with its variants was already used to locate the marginal value of
Q > 2 in three dimensiondl[/] and in the study of the backbone exponent of critical Q-state Potts
models in two dimensiond f].

Since this kind of algorithms implies a random sequence of disordering moves of type (a)
and (b), randomly distributed over the lattice, it led to conjecture that they do not suffer of critical
slowing down [L6, 17]. A subsequent numerical analysis for some integer valu€gioftwo and
three dimensions showed that this conjecture is fal§g [it reduces critical slowing down, but
does not completely eliminate it, in the sense that its dynamical critical exponent is smaller than
Swendsen-Wang, but in general does not vanish, at lea& foR in 2D andQ > 2 in 3D [19].

Of course, for a practical use of viable Monte Carlo algorithms it matters not only the intrinsic
dynamics of the transition rates, but also the efficiency of the numerical implementation. In the

1if one replaces the rule (c) with the new rule (c’): put a bond only if the nuroloéiclusters is kept constant (this
was the rule chosen in reff] in the case&Q > 1) then one finda= p/Q andb = p.
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Figure 2: The mass of the lowest physical state in the symmetric vacuum (left) and the string tension in the
confining vacuum(right). The data refer@-= 1/10 Potts model in a lattice of size 82

present case we succeeded in simulating lattice sizes of the order of those used in current gauge
simulations.

5. Numerical results

A simple observable which can be used to locate the thregheldl — e % where an infinite
FK cluster forms is the connectivity correlat@t(x,y) = (¢xy), where¢yy = 1 only if x andy
belong to the same cluster, otherwise is set to zero. Clearly fop; one observes an asymptotic
exponential decay (x,y) ~ e XYl with increasing separatigm —y|, wheremis the mass of the
lowest physical state. The correlation length- 1/mis of the order of the mean linear size of the
FK clusters. As a consequencayanishes ap;, and it is expected to obey a critical power law

m~a(p—p)’ +b(p—p)¥ +... (5.1)

wherev = v(Q) is the thermal exponent. Unfortunately it appears that this critical exponent has
not yet been calculated in 3D Q-state Potts models in the rarg® & 1, apart the speci&) — 0
limit (see the second paper dff]).

We performed our simulations on aB@ubic lattice alQ = 7. We extracted the mass of the
lowest physical state using the zero momentum projection and fitted the d&td)tag shown in
Fig.2 (left). As a result the threshold value for the formation of a percolating FK cluster and the
thermal critical exponent turn out to lpe = 0.050Q18) andv = 2.50(9). Note that this value of
v is much larger than the corresponding valu®at 1 vo—1 = 0.874(2). This agree with the fact
that in two space dimensions the presumed exact valvdrafreases a® decreases.

On the same lattice at the same valu€of 1—10, but at larger values gd, where one can easily
observe percolation of the sub-clusters made with the circuits of the FK clusters, we measured the
vacuum expectation value of a set of square Wilson loops, in order to evaluate the string tension.
They perfectly fitted the expected asymptotic functional form for the confining phase (including
the log term due to the quantum fluctuations of the underlying confining string). The extracted
string tension as a function @f is nicely described by a power law (see Fig.2 (right): the fitting



Confining vacua and Q-state Potts models with Q<1 Ferdinando Gliozzi

curve is a straight line in the log log scale). However the vanishing point of the string tension,
po = 0.0631), where the deconfining phase starts, does not coincide with the threghold

the rangep; < p < po the vacuum of this theory is characterised by a non-vanishing magnetic
monopole condensate which is not confining, being 0 there.

Note that, contrarily to what happens in the gauge dual® of 1 Potts models, the critical
index v, associated to the vanishing of the string tension is totally different from the thermal critical
indexv. It is worth observing that there is no local order parameter that can signal when an infinite
cluster of circuits forms , being a phenomenon of topological nature that can be detected only by
large Wilson loops. As a consequence we do not expect that in these gauge models the vanishing
of the string tension is associated to any sort of bulk transition.
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