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On the structure of QCD confining string
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The action density distribution associated with confining flux tube is investigated in SU(2) lattice
gauge theory at widely varied lattice spacing. It is argued that the gluon condensate vanishes
on the string symmetry axis. We qualitatively confirm the widening of the string with increase
of sources separation, however, the broadening seems to be a subleading effect. Instead, it is
argued that the string width shrinks linearly with lattice spacing and the action density diverges
quadratically keeping the static potential cutoff independent.
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On the structure of QCD confining string F.V. Gubarev

It is commonly believed that quark confinement happens due to formation of thick chromo-
electric string spanned between color sources, which due to its non-zero tension confines quarks
into colorless hadrons. However, apart from the non-zero physical tension the model independent
properties of QCD string are still mostly unknown. In this respect the lattice simulations are in-
dispensable, see, e.g., Refs. [1, 2] and references therein. In particular, the QCD string manifests
itself in the suppression of the gluonic action density, which is directly observable in numerical
experiments.

In this paper we report (slightly updated with respect to [3], see below) measurements of the
action density distribution associated with the confining flux tube in quenched SU(2) lattice gauge
theory. Our geometrical setup is as follows. The static quark-antiquark pair created at the Euclidean
time t = 0 and annihilated at t = T is represented by rectangular T ×R Wilson loop. The elapsed
time T is asserted to be large enough to observe fully developed string at t = T/2, where the
numerical evaluation of the string action density profile is performed. We consider the correlation
function

∆s(x,T,R) = 〈s〉0 −〈s〉W = 〈s〉0 −
〈s(x)W (T,R)〉

〈W (T,R)〉
, (1)

which is the difference of the action density s = 1/2TrF 2
µν in the vacuum, 〈s〉0, and its expectation

value evaluated in the presence of heavy quark-antiquark pair at spatial coordinates x from the
Wilson loop geometrical center. Then the natural coordinates are x = (r,h), where r and h denote,
respectively, the transverse and longitudinal distances to the loop center point.

As far as the structure of QCD string is concerned, theoretically, the effective bosonic string
models together with the leading orders in 1/R expansion had been favorable for ages (see, e.g.,
Ref. [4] and references therein). Their universal common point is that infinitely long QCD string
does not exist. Indeed, the string must fluctuate quantum-mechanically and one generically ex-
pects [5] that its transverse shape should be Gaussian with logarithmically divergent squared width

∆s(h = 0,r,R) = C(R) exp{−r2/δ 2(R)} , (2)

δ 2(R) =
1

πσ
ln(R/R0) , (3)

where σ is the string tension and the limit T → ∞ is understood. On the other hand, the rigorous
action sum rules [6] imply that in the leading order in R

δ 2(R) · C(R) ∝ σ , (4)

and hence the string is to disappear in the limit R → ∞. The logarithmic washing out of the string is
generic and universal prediction of effective bosonic string models. Note that within this approach
only the infrared QCD scale does matter, which is an a priori postulate of the effective models.

If we turn to model-independent considerations, it is crucial that the vacuum expectation 〈s〉0
is likely to mix up the ultraviolet (lattice spacing a) and the infrared QCD scales [7]. Namely, up
to the powers of ln(aΛQCD) one expects

〈s〉0 = α0/a4 + β0 Λ2
QCD/a2 + γ0 Λ4

QCD . (5)

The first and the last terms are well understood and correspond, respectively, to zero-point fluctua-
tions and the conventional gluon condensate. For the second term there are strong indications [7]
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β 2.450 2.475 2.510 2.550 2.600 2.628 2.740 2.800
V lat 244 264 324 344 404 364 364 404

a, fm 0.100(1) 0.091(1) 0.081(1) 0.073(1) 0.062(1) 0.056(1) 0.041(1) 0.034(1)

V, fm4 2.44 2.44 2.64 2.54 2.54 2.04 1.54 1.44

Table 1: Simulation parameters.

that it is indeed non-vanishing although is parametrically small. To the best of our knowledge the
actual numbers here are not known precisely for SU(2) gauge theory and could be estimated as

β0Λ2
QCD = [50(10)MeV]2, γ0Λ4

QCD = 0.02(1)GeV4. (6)

Generically, for the action density 〈s〉W within the QCD string an analogous expression holds and
then the difference (1) is to be parametrized as

∆s = α/a4 + β Λ2
QCD/a2 + γ Λ4

QCD , (7)

where we omit (h,r,R)-dependencies. While the first term here is expected to vanish, little is known
about other contributions. Moreover, since ΛQCD enters both of them, there are no reasons for β ,
γ coefficients to be identically zero. The prime objective of our paper is to investigate (7) and to
present evidences that both IR sensitive terms are indeed non-vanishing (the physical consequences
are discussed in concluding remarks).

Our numerical simulations were performed on large set of statistically independent quenched
SU(2) configurations generated with standard Wilson action (Table 1). In order to improve the
statistics the correlation function (1) was required to be symmetric with respect to h → −h, thus
only even-sized Wilson loops with both temporal and spatial extents up to the half of the lattice
size were considered. The signal-to-noise ratio was further enhanced via the standard temporal
link integration and APE smearing techniques (see Ref. [1] for comprehensive discussion). The
smearing parameters were determined at each β -value according to [8]; error estimation was done
via jackknife method. The action density is symmetric clover-like sum of all neighboring plaquettes
contributions. This choice prohibits to consider the points which are too close to the external color
sources: the action density operator should not include the links which enter the Wilson loop with
integrated temporal edges. Here we differ slightly from the analysis of Ref. [3], where a few
exceptional points of this sort had been considered as well. Note, however, that this modification
does not change our results and conclusions in any notable way. Furthermore, in the present study
we also included additional data set at β = 2.80 with smallest available to us lattice spacing.

Up to this point our setup is similar to that of Ref. [1]. However, the crucial difference is in the
methodology of the ground state separation. Technically, the problem is to take the limit T → ∞,
for which the rigorous transfer matrix arguments imply that the leading finite T correction is

∆s(h,r,R,T ) = ∆s(h,r,R)+ c(h,r,R) · e−m(R)T , (8)

where the h,r,R dependence is stated explicitly. Note that the gap m(R) to the next exited state
depends upon the quark-antiquark separation R only. This observation allows to improve greatly
the quality of T → ∞ fits. Indeed, it suffices to consider some finite (h,r)-range, where signal is

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
0
7

On the structure of QCD confining string F.V. Gubarev

 0.01

 0  0.02  0.04  0.06  0.08  0.1

∆s
, G

eV
4

r2, fm2

R=0.50 fm
R=0.62 fm
R=0.74 fm
R=0.87 fm
R=0.99 fm

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

δ2 , f
m

2

R, fm

a, fm
0.100(1)
0.091(1)
0.081(1)
0.073(1)
0.062(1)
0.056(1)
0.041(1)
0.034(1)

Figure 1: Left: transverse action density profiles taken at h = 0 and various R on β = 2.600 data set, lines
correspond to the best Gaussian fits, Eq. (2). Right: squared string width δ 2 versus the string length R,
graph includes only the points for which both T → ∞ and Gaussian fits are reliable.

expected to be significant, and fit the data to Eq. (8) with one and the same gap parameter m(R)

for all (h,r) points. In practice, the initial (h,r)-range was taken to be h ≈ R/2, r . [0.3fm]/a,
where 0.3fm is the expected string width scale [1]. Then we varied (h,r) upper limits as well as
T fitting range to ensure the fit stability. In most cases the obtained ∆s(T = ∞) values turned out
to be stable with respect to fit parameters variations. Otherwise, the instability of the global fit (8),
which happened for several large R data sets, was treated as the lack of statistics, all such points
were excluded from further analyzes.

The typical transverse action density profiles obtained at h = 0 and various R are presented on
the left panel of Fig. 1. As a matter of fact, for R > 0.4fm all our data points (including r = 0) fall
indeed onto the Gaussian curve (2) which broadens with rising R. Note that the minimal R, at which
the Gaussian distribution (2) becomes adequate, seems to decrease systematically with diminishing
lattice spacing. In particular, for a < 0.05fm the string theory prediction (2) holds from R ≈ 0.2fm
onwards. The data for squared string width δ 2(R), obtained from the fits to Eq. (2), is presented on
Fig. 1 (right panel); only reliable data points, for which both T → ∞ and Gaussian fits are adequate
and stable, are taken into account. It turns out that for a ≥ 0.06fm the width of the flux tube
is essentially lattice spacing independent and is about δ ≈ 0.3fm for 1fm long QCD string. As is
apparent from the figure at every fixed lattice spacing the confining flux tube slightly broadens with
R. Note, however, that the data does not permit us to discuss the logarithmic widening earnestly.
The point is not the stability of the logarithmic fits, which one could try out (they are unstable
and only allow rough estimation of the relevant parameters). What is crucial is that starting from
a ≈ 0.06fm the string width systematically decreases with diminishing spacing. For instance, at
a ≈ 0.04fm the width of 1fm long string is of order 0.15fm. Note that this behavior is qualitatively
compatible with δ ∼ a dependence, which (if confirmed by other measurements) implies that the
string widening observed at finite lattice spacing is a subleading effect which does not survive in the
continuum. This rather unexpected conclusion certainly has to be ratified from different viewpoint,
to which we turn now.

The shrinking of the QCD string could be assured almost independently via the action sum
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Figure 2: Longitudinal string profiles at r = 0. Note that on both figures the data points are Y-shifted for
readability reasons. Left: R-dependence of ∆s at h = 0 and various spacings, curves are the best fits to
Yukawa-like ansatz (see text). Right: longitudinal string slices at indicated quark-antiquark separations and
various spacings. Curves represent the best fits to Eq. (9).

rules (4) once the Gaussian shape of the transverse profile had been established for r ≥ 0. To this
end let us focus on the action density difference (1) at the string geometrical center r = h = 0, at
which ∆s is a function of R and a only. The problem here is the reliable extrapolation to the limit of
large quark-antiquark separations, for which theoretically grounded ansatz like (8) does not exist.
Our solution is purely experimental: we observe that at every fixed spacing the R-dependence
of the action density at the string central point is well described by simple Yukawa-like ansatz
∆s(R) = ∆s + const · exp(−MR/2), see the left panel of Fig. 2. Then the quality of fits could be
greatly improved by considering simultaneously all available h-points at r = 0. Indeed, for h 6= 0
the above Yukawa ansatz generalizes to

∆s(h,R) = ∆s+A · e−MR/2 · cosh(M h) . (9)

Despite of its simplicity Eq. (9) works surprisingly well and correctly describes all available nu-
merical data (see Fig. 2 for illustration). In turn, the fits suggest strongly that both parameters A(a),
M(a) are divergent in continuum with leading divergences being compatible with A ∼ 1/a4 and
M ∼ 1/(a2ΛQCD). Taken at face value the data indicates that in the continuum limit the confining
string appears immediately once the quark pair is created and its longitudinal profile has no sign
of Coulomb-like tails coming from color sources (excluding, of course, the positions of quarks,
where self-energy singularities are generically expected). Note, however, that this doesn’t deny a
Coulomb piece in the static potential, which is present indeed and scales with a in usual way, see
below.

The action density difference at the string geometrical center in the limit of large quark-
antiquark separation as is determined via Eq. (9) is shown on the left panel of Fig. 3. As is ap-
parent from that figure, the data points suggest that a2 ·∆s is linear in a2 and has non-zero intercept
with the vertical axis. Thus we conclude that the difference between the action density at the QCD
string geometrical center and its vacuum expectation value is likely to diverge quadratically in the

5
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Figure 3: Left: lattice spacing dependence of the action density at the string geometrical center in the limit
of large quark-antiquark separation. Right: scaling of the heavy quark potential with lattice spacing. Note
that the constant contribution had been subtracted.

continuum limit

∆s =
β Λ2

QCD

a2 + γ Λ4
QCD . (10)

βΛ2
QCD = [27(2)MeV]2 , γΛ4

QCD = 0.018(2)GeV4 . (11)

Few comments are now in order:
i) The last term in Eq. (10) corresponds to the conventional gluon condensate and the numerical

value quoted in (11) is fairly compatible with its best known to us estimates in SU(2) gluodynamics
(cf. Eq. (6)). Thus we conclude that the gluon condensate vanishes on the symmetry axis of long
QCD string.

ii) At first sight, the quadratically divergent term looks suspicious since its numerical value
is rather unusual for the quenched theory. However, this term is known to be small, see Eq. (6).
Moreover, we definitely exclude the possibility that it is caused by the finite volume effects. In-
deed, all our data points fall practically onto the same curve, however, the corresponding physical
volumes differ significantly. On the other hand, it is the parametric smallness of the divergent term
which explains the observed constancy of the string width for a & 0.06fm. Essentially at this lattice
spacing the eventually divergent term becomes comparable with the gluon condensate and starts to
dominate the action density, squeezing the flux tube.

iii) Finally, we note that despite of the seemingly vanishing string width and the divergent
action density, the rough estimation of the product δ 2 ·C reveals that it has no sign of power-like
lattice spacing dependence as is required by Eq. (4). Moreover, the heavy quark potential scales
correctly, see Fig. 3 (right). Hopefully, the same holds for other physical observables as well.

To summarize: the central point of our paper is to argue that in the Yang-Mills theory de-
pendence upon the UV scale is likely to be much more intricate than it is usually thought to be.
Our results constitute an additional confirmation of this, however, the prime message encoded in
the paper is not new. Indeed, there are accumulating evidences that a kind of UV/IR mixing, or
fine tuning, is inherent to Yang-Mills theory. Historically, it was discussed first in connection with
center vortices [9], which tuned out to be infinitely thin surfaces with nonetheless physical total
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area. Then the analogous phenomenon was discovered in the vacuum topological density: it had
been shown [10] that topology is concentrated within the percolating three-dimensional domains
possessing divergent topological density (for further examples and thorough discussion see, e.g.,
Refs. [7, 11] and references therein). What is in common for both these examples, is that neither the
center vortex thickness nor the vacuum topological density are directly observable. In this respect
our results are indeed remarkable, since it became a common wisdom to believe that the string the-
ory prediction (2, 3) undoubtedly holds for QCD string. However, we were not able to imaging a
physically meaningful experiment which would assert the validity of either (2) or (3) separately. It
seems that only their “integral version”, Eq. (4), is meaningful and indeed no sign of lattice spacing
dependence had been seen in the heavy quark potential. Therefore, our findings are similar to the
above example, for which the observable integral effect is encoded into the topological suscepti-
bility. The only essential difference is that the object, for which the fine tuning was discussed, is
rather unexpected in this context.
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