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1. Motivation

Overlap fermions [1] possess exact chiral symmetry on the lattice, realize the Atiyah-Singer
index theorem [2] and provide a local definition of the topological charge density [3]. This makes
them an ideal tool for investigating the chiral and topological QCD vacuum structure.

In this talk we shall summarize some results of a recent extended study [4] of the vacuum
structure of quenched QCD at zero temperature. One of the lessons is that there exists a whole
family of topological descriptions, ranging from an UV filtered density (characterized by a cut-off
scale λcut and sign-coherent selfdual clusters) to a topological density with high O(a) resolution
(also called “all-scale density”) forming global, sign-coherent lower-dimensional structures [5].
The other lesson is that, apart from the overall chirality that clearly distinguishes zero and non-
zero modes, the localization features are smoothly changing from one to the others. The non-zero
modes, through the local chirality, still feel the (filtered) topological background.

This talk focuses on two aspects of Ref. [4], the localization of the low-lying eigenmodes and
of the all-scale topological density. The localization properties of the low-lying modes [6, 7, 8, 9]
have attracted interest since they are hypothetically pinned down on singular defects [10] which
are responsible for confinement. Candidates for this role are monopoles and vortices as located by
Abelian or center projection (for a review see [11]). The localization of the all-scale topological
density has also been considered [6] for similar reasons. In particular, peaks are expected on
vortex intersections etc. and usually searched for by zero modes [12, 13]. We stress that the
mechanism behind the formation of the peculiar singular and global structure [5] appearing at
low density is unknown. This structure is necessary for the negativity [14, 8, 4] of the two-point
function C(x− y) = 〈q(x)q(y)〉 required by reflection positivity [15]. This aspect of topological
charge is complementary to the instanton-like clustering of the UV filtered density in approximately
(anti-)selfdual domains [4]. Thus, the low-lying modes and the (unfiltered) topological density
can be seen in closer relation to the mechanism of confinement. On a macroscopical level, such
a relation is well established: the removal of vortices or monopoles from lattice configurations
simultaneously destroys the topological charge and restores chiral symmetry [16, 17, 18].

2. Localization of overlap eigenmodes

We use the massless Neuberger [1] overlap Dirac operator

Dov(0) =
ρ

a

(
1+DW /

√
D†

W DW

)
, with DW = M− ρ

a
, (2.1)

the Wilson Dirac operator with hopping term M and negative mass ρ/a. The quenched ensembles
of [4] were generated by the Lüscher-Weisz action, for β = 8.45 on lattices 123×24, 163×32 and
243 × 48, for β = 8.1 on 123 × 24 and for β = 8.0 on 163 × 32. First results have been reported
by Y. Koma [8] at Lattice 2005. At that time, we estimated the dimension of zero modes and
non-zero modes in the lowest bins of the spectrum from the volume V dependence of the Inverse
Participation Ratios (IPR), IPR = V I2 = V ∑x |ψλ (x)|4, averaged over the respective modes. The
average IPR should follow a power law

〈IPR〉= c1 + c2V 1−d∗/4 , (2.2)
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Figure 1: Fractal dimension d∗(n) obtained from fits of the volume dependence of the averages of In, for
zero modes and for non-zero modes in bins ∆λ = 50 MeV, for three ensembles with the same β = 8.45 and
different volumes.

allowing to infer the fractal dimension d∗. We concluded [8] that zero modes are d∗ = 2 and
next-to-zero modes d∗ = 3 dimensional. Now we refine this statement by considering generalized
IPR’s [19]. With their help one should be able to find lower dimensions for regions of higher
density if a multifractal structure is physically realized. The second moment I2 of the scalar density
p(x) = |ψλ (x)|2 is replaced by higher one, In = ∑x |ψλ (x)|2n, such that a sequence of dimensions
d∗(n) can be extracted from the volume scaling of 〈In〉 ∝ Ld∗(n)(n−1). The result of this analysis is
shown in Fig. 1. This plot shows that the regions of higher scalar density are lower dimensional
(between d∗ = 0 and 1). There is a gradual change of the localization properties from zero modes
to non-zero modes.

In Ref. [4] we have described methods to estimate the dimension of an arbitrary distribution at
any level of the density. Both methods assume a cluster analysis already made to separate peaks of
the distribution from the rest of the system. The emerging set of connected clusters, as function of a
running parameter, e.g. the lower density cut-off for the clusters, characterizes the distribution [4].
In the random walker method, for random walkers moving inside a cluster, the return probability
to the cluster center, P(0, t) ∝ t−d∗/2, provides an estimate of the dimension d∗ depending on the
adopted cut-off. Another cut-off dependent dimension d∗ can be inferred, in the covering-sphere
method, from the growth (from 0 to 1) of the cumulative fraction Qcumulative of a cluster’s total
charge that is covered by a 4D sphere of radius R. This growth begins Qcumulative ∝ Rd∗ [4] 1.

Fig. 2 shows for selected modes in an ensemble of 170 lattices 163×32 at β = 8.45 the number
of clusters (i.e. separate maxima) on the left and the effective dimension d∗ of the clusters on the
right as function of the cut-off pcut. The dimension was estimated by the random walker method.
Percolation, that is not shown here, sets in between pcut/pmax < 0.1, i.e. rather low for the zero
modes, and pcut/pmax = 0.3 for the 120-th modes.

We conclude that all modes, including the zero modes, percolate at sufficiently low density. If
cut at an average level of density, 5 to 20 different peaks are discernible, depending on the mode.
The zero modes, before finally percolating, too, do not exceed a dimension d∗ = 2 as long as
pcut/pmax > 0.2 .

1Although the results are similar, the effective dimensions obtained by the two methods do not strictly agree.
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Figure 2: Cluster analysis of selected eigenmodes, averaged over the ensemble mentioned in the text, as
function of the cut-off pcut/pmax for the scalar density. Left: number of clusters in the mode; right: effective
dimension d∗ of the mode.

3. Localization of topological charge

For a Dirac operator satisfying the Ginsparg-Wilson relation, the topological charge density
can be expressed as a local trace (with the massless overlap operator D(0))

q(x) =−tr
[
γ5

(
1− a

2
D(0;x,x)

)]
, Q = ∑

x
q(x) (3.1)

over color and spinor indices. The UV filtered densities are obtained by casting this into a spectral
sum and using a mode-truncation |λ | < λcut. Without truncation, we have evaluated the density
only for a small subset of two of our ensembles (53 configurations 123×24 for β = 8.1 and 5 con-
figurations 163 × 32 for β = 8.45) representing almost equal volume. Fig. 3 shows, analogously
to the last figure, the cluster composition and dimension of the unfiltered topological density as
function of qcut (meant as a cut-off for |q(x)|) for the two lattices. The left plot shows that for
qcut/qmax > 0.5 only few isolated spikes are detected. They do not have a sufficient extension that
a power-law decay of P(0, t) could be determined (“0-dimensional”). The right plot shows that
for qcut/qmax < 0.5 the dimension starts growing to d∗ = 2.5. At the maxima 2 of multiplicity, at
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Figure 3: Cluster analysis of the all-scale topological density for the 163 × 32 lattice at β = 8.45 and the
123 × 24 lattice at β = 8.1 as function of the cut-off qcut/qmax. Left: number of clusters; right: effective
dimension of the clusters from the random walker method.

2With a → 0, the maximal number of clusters rises strongly.
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Figure 4: The ratio Qcumulative(R) of the charge covered by the sphere to the full cluster charge for the largest
cluster is shown as function of R for various cut-off values, for the 123 ×24 lattice at β = 8.1 (left) and the
163×32 lattice at β = 8.45 (right). Note the abrupt change at qcut/qmax = 0.2 (left) and 0.25 (right).

qcut/qmax = 0.2 (for the coarse) and 0.25 (for the fine lattice), we find the same d∗ = 1. Close to
these maxima the covering sphere method also finds a change shown in Fig. 4, signaling the onset of
percolation. Below qcut/qmax < 0.05 the cluster composition goes over to two sign-coherent global
clusters of charge Q+ and Q− which fill the volume and build the total charge Q of the configura-
tion. A distance between clusters, C,C′, can be defined as ∆C,C′ = maxx∈C

(
miny∈C′ |x− y|

)
. When

the percolation is complete, the two remaining clusters have ∆ ≈ 2a, i.e. are closely intertwining
each other.

4. Lower dimensional objects and confining vacuum defects

Here we shall offer an explanation for the even lower-dimensional local clusters of the unfil-
tered topological charge inside the global clusters (with d∗ ≈ 2.5). For 1 < d∗ < 2, monopoles and
vortices are good candidates to cause the localization of charge. These are the two types of confin-
ing defects which are intimately connected [17]. If one sort is removed, the other one disappears
together with the topological charge (all zero modes) and the non-zero modes close to λ = 0 [18].
To demonstrate the correlation we have used the Indirect Maximal Center Gauge (IMCG) [20]. In
a first step the Maximally Abelian Gauge (MAG) is accomplished, followed by Abelian projection:
each MAG-fixed gUlink ∈ SU(3) is replaced by the closest diagonal matrix Dlink ∈ SU(3). The
norm ||gUlink −Dlink|| is called non-Abelianicity. The monopole worldlines are located on cubes
(i.e. links of the dual lattice) where the Abelian magnetic charges (m(1)

c ,m(2)
c ,m3

c) (∑k m(k)
c = 0)

are not all vanishing. In a second step, within residual Abelian gauge transformations h ∈U(1)2,
we find the Maximal Center Gauge (MCG) which brings hDlink as close as possible to multiples of
unity, zlink×diag(1,1,1) with zlink ∈ Z(3) being the links after center projection. Center plaquettes,
for which p = Πlink∈∂ p zlink 6= 1, mark the presence of a vortex that is geometrically located on the
dual (“vortex”) plaquette ∗p. A peculiarity of SU(3) compared to SU(2) is vortex splitting.

Density and connectivity describe the “vortex matter” corresponding to some given gauge field
ensemble. For β = 8.45 we find the probability for a dual site to be adjacent to n vortex plaquettes
as shown by the histogram in the left of Fig. 5. Here 87 % of sites belong to the bulk (n = 0), 4.3 %
are adjacent to 3 plaquettes (corner), 3.8 % to 4 plaquettes (planar vortex) etc. The probability for a
dual link to be adjacent to n vortex plaquettes is shown in the histogram on the right of Fig. 5. This
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Figure 5: The connectivity of the vortex structure. Left: histogram of dual sites w.r.t. the number n of
adjacent vortex plaquettes; Right: histogram for dual links w.r.t. the number n of adjacent vortex plaquettes.

is an important input for the construction of a realistic effective vortex model [21] for confinement.
Thus 93 % of the links belong to the bulk (n = 0), 6.25 % are adjacent to n = 2 plaquettes, 0.4 %
to n = 3 plaquettes (branching) etc.

Close to the monopoles, the non-Abelianicity and the modulus of the topological density |q(x)|
show an excess above their bulk averages. Thus they are positively correlated. Fig. 6 illustrates
the enhanced probability to find a site of the original lattice close to a monopole and/or vortex if
for the (unfiltered) topological density at the site |q(x)|> 0.2 qmax is fulfilled. This proves that the
confining defects are the preferred location for topological charge.

5. Summary

We have summarized the localization of eigenmodes and of the unfiltered all-scale topologi-
cal density q(x) provided by our recent investigation of the vacuum structure based on the overlap
operator [4]. In addition, we have presented first results relating the low dimensionality of q(x)
at densities above the percolation threshold to a local correlation with monopoles and vortices de-
tected in the course of IMCG. More results and corresponding observations concerning the lowest
modes will be published elsewhere [22].
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Figure 6: The probability P for a site of the original lattice to be adjacent (closest) to a monopole (left)
and to a vortex (right) depending on the unfiltered topological density. The horizontal blue lines show the a
priori probability P0 for a site to be close to a monopole or vortex. The histogram covers the interval from
0 to qmax.
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