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1. Introduction

In our study we considered the quenched topological susceptibility χY M
top which is linked via

the famous Witten-Veneziano formula [1, 2]

χ
Y M
top =

F2

2N f

(
M2

η ′ +M2
η −2M2

K
)

(1.1)

to the excess of the η ′ mass over the pseudoscalar octet masses, where the proportionality factor
contains the pseudoscalar decay constant F = 86.2(5)MeV in the chiral limit1. This relation holds
at leading order in the large Nc expansion and connects full QCD with the corresponding theory
at zero virtuality. We study with unprecedented precision the quenched topological susceptibility
for the case Nc = 3. We start by defining a topological charge for the lattice and explain how it is
possible to extract the topological susceptibility in the continuum. The next sections contain details
of our lattice simulations as well as the analysis of our results. We take the continuum as well as the
infinite volume limit and obtain a value for χY M

top in terms of the Sommer radius r0 [3]. To convert
this value into physical units, it is necessary to set the scale and discuss it’s intrinsic ambiguity.

2. Topological charge definition

In the continuum the topological charge q of a given gauge background is given by

q =
1

16π2

∫
d4x Tr

[
Fµν(x)F̃µν(x)

]
, (2.1)

where F̃µν = εµναβ Fαβ /2 and Fµν = Fa
µνλ a/2 is the field strength tensor. On a toroidal space-

time geometry (2.1) is integer and linked to the index of the Dirac operator D via the Atiyah-Singer
theorem [4]

q = n−−n+, (2.2)

where n± denotes the number of zero modes of D with positive or negative chirality. The lattice
itself is no manifold and therefore there is no unique definition of the topological charge for its
geometry T 4. The simplest choice, which we will call the "naive charge", is of course the straight-
forward discretization of (2.1):

qnai
.=

1
16π2

∑
x∈T 4

Tr
[
Fµν(x)F̃µν(x)

]
, (2.3)

where one also has to apply a suitable discretization of Fµν which has the correct continuum limit.
This definition in general does not yield integer values. It is possible to discretize the fermionic
definition (2.2) in a way, that it will always give integer values (cf. [15, 16]), but this is computa-
tionally very expensive.
In the continuum the topological susceptibility χtop is defined as

χtop
.= lim

V→∞

〈q2〉
V

, (2.4)

1We use the Bern normalization where Fphys
π = 92.4(3)MeV.
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what shows that a finite volume is mandatory for its definition. Contributions which grow less than
linearly in V will create finite volume effects in χtop. It is obvious that the lattice definition of χtop is
very sensitive to the definition of the topological charge q. The traditional approach is to calculate
〈q2

nai〉/V and then to apply a multiplicative as well as an additive renormalization [5 – 7]. Using the
integer-valued fermionic charge qfer instead renders the additive renormalization unnecessary. On
the other hand, as already mentioned, such a definition is very expensive and therefore not suitable
for a high precision lattice study of the topological susceptibility. In this project we followed a
different approach, namely by renormalizing the naive charge and casting it to integer values. This
is done in the following way: we used the standard "clover-leaf" definition for Fµν (which uses
the average of the antihermitean part of the plaquette Pµν at x, x− µ̂, x− ν̂ , x− µ̂ − ν̂), based on
(p-)HYP smeared [8] gauge links. Plugging this into 2.3 we obtain the bare charge qnai which is
a real number. One of our qnai distributions (β = 6.0, 124, 3 HYP steps) is displayed on the left
panel of Fig.1. Due to CP symmetry, only a multiplicative renormalization applies and we opt for a
non-perturbatively defined Z-factor. We make use of the fact, that the overall distribution qnai tends
to cluster near integer values (cf. 1). We obtain Z by minimizing

χ
2 =

∑
U

(Z qnai[U ]− round(Z qnai[U ]))2 (2.5)

with the constraint Z > 12 and use it to define the renormalized field-theoretic charge

qren[U ] .= round(Z qnai[U ]) , (2.6)

where round means rounding to the nearest integer. With this charge definition, we set

χtop,lat(a,V ) .=
〈q2

nai〉
V

(2.7)

and take the combined continuum and infinte volume limit in order to obtain the topological charge
in the continuum. Indeed, the rounding procedure introduces a global element and therefore our
definition of the topological charge cannot be rewritten as an integral over a local density. Accord-
ingly, there is no conflict with the result by Stamatescu and Seiler that q(x) in general mixes with
the identity and

∫
d4xq(x)q(0) has a contact term [14]. Our topological susceptibility vanishes in

the zero-charge sector and an additive renormalization of χtop,lat is therefore absent.

3. Lattice simulations and results

We performed two series of runs: one for doing the continuum- and the second for doing the
infinite volume extrapolation. We use the MILC code [9] to produce the SU(3) gauge ensembles
a different β -values and lattice sizes. In the first run, the lattice size and coupling β was varied
in order to keep the physical volume fixed at V = (2.2394r0)4. The dependence of a on β and r0

is given by the Necco Sommer data [10], where we applied a different fit model [13]. We aimed
at 105 measurements per run, where we adapted the separation between the measurements when
simulating at larger β in order to keep the autocorrelation time approximately constant. As a first

2This is to avoid the global minimum at Z = 0 [11]. Perturbative studies also show that Z = 1+ const/β > 1 [12].
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Figure 1: Histogram of the topological charge qnai with 3 HYP steps for the 124 lattices at β = 6.0, before
and after rescaling with the renormalization factors defined in (2.5).

Figure 2: Histogram of the renormalized topological charge qren for the (6.0,124) [left] and (6.3344,204)
lattices [right], where the Gaussian fit excludes the q = 0 sector. The excess gives rise to the kurtosis
〈q4〉/〈q2〉2−3 (cf. Fig.4(a)).

check, we calculated |〈q〉| and found it consistent with zero on all lattices. The observable of
interest 〈q2〉 is measured with 1% accuracy or better throughout. In addition we checked whether
using two or four steps of HYP smearing changes our results significantly, but this is not the case.
The histogram of the renormalized charge qren for (β = 6.0,L/a = 12) is displayed in Fig.2. It
turns out that the relative weight of the topologically non-trivial sectors is almost consistent with
a Gaussian, while the q = 0 sector shows a clear excess. This leads us to the definition of a new
estimator 〈q2

ren〉q6=0, which should be unsensitive to this excess. It is computed by symmetrizing
the charge histogram and fitting it to a half-Gaussian, where the zeroth bin is neglected. The width
of this Gaussian is then denoted by 〈q2

ren〉q6=0. The continuum limit of both, the naive and the new
estimator, is shown in Fig.3(a).

By applying a linear fit3, we obtain the significantly different continuum limits 〈q2〉(r0/L)4 =
0.05092(71) and 〈q2〉q6=0(r0/L)4 = 0.05205(71) respectively. We assume that this difference is
caused by a finite volume effect, which brings us to the discussion of the second series of runs.
Finite volume effects are attributed to infrared physics and we assume that our IR and UV modes

3and dropping the point at the coarsest lattice (β = 5.898,L/a = 10)
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(b) Infinite volume extrapolation vs. r0/L.

Figure 3: Different extrapolations of χtopr4
0.

decouple. Therefore ist is sufficient to restrict ourselves to a single coupling β = 6.0. Usually, finite
volume effects are caused by massive states travelling around the box. Because we are simulating
in a world without quarks, these states have to be glueball states with a mass MG. These states
imply corrections to the partition function of the following form

Z(L) = Z(∞)
(
1+ conste−MGL + . . .

)
. (3.1)

If we assume these exponential finite-volume effects, the data for the naive estimator may be fitted
all the way out to L/a = 10 and suggests a correction ∆χtop,red = 0.00175. The dataset coming from
the second estimator is unaffected by finite volume corrections (cf. Fig.3(b)), so the corresponding
continuum limit does not need any correction. Hence we obtain 〈q2〉(r0/L)4 = 0.05267(71) and
〈q2〉q6=0(r0/L)4 = 0.05205(71). Taking the mean and the full difference as our systematic error, we
obtain for the topological susceptibility in the continuum

χtopr4
0 = 0.05236(71)(62), (3.2)

where the first error is statistical and the second systematical.
We also verified directly that the excess in the zeroth bin of the populations in Fig.2 is a pure finite
volume effect. Therefore we measured the kurtosis 〈q4〉/〈q2〉2−3, a quantity which measures the
deviation of a given distribution from a Gaussian. It turns out that this quantity does not vanish
in the continuum extrapolation series of runs (cf. Fig.4(a)), as anticipated when having a closer
look at Fig.2. But when having a look at the infinite volume behaviour of this quantity, we find a
vanishing kurtosis (cf. Fig.4(b)).
We also measured the reduced moment ratio 〈q4〉/〈q2〉−3〈q2〉 and performed the infinite volume
limit. Here, we are consistent with the value 0.276(84) given in [17], but we cannot rule out the
possibility that the infinite volume limit of this quantity might actually vanish.
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Figure 4: Different extrapolations of 〈q4〉/〈q2〉2−3.

4. Conversion to physical units

Finally we convert our unambiguous result for the topological susceptibility in the combined
continuum and infinite volume limit in units of r−1

0 into physical units. Therefore we have to
assume a value (in fm) for r0. In full QCD, r0 is a well defined quantity and can be determined
by measuring aMp, aMπ and aMK in 2 + 1 flavour simulations in which their ratios are adjusted
to the corresponding experimental value. By considering r0Mp, one then would obtain the correct
physical value. Of course, one can use the original value of r0 = 0.5fm also in YM theory, but
there are different estimates coming from Kaon decay measurements (r0 = 0.512(12) fm) or recent
studies which give r0 = 0.467(6) fm. To reflect this ambiguity, we choose r0 = 0.49fm and add a
4% error. With this choice, we find for the topological susceptibility in physical units

χ
1/4
top = 193(1)(8)MeV, (4.1)

where the first error bar contains all statistical and systematic uncertainties of our calculation, and
the second one reflects the scale setting ambiguity in a theory which is different from full QCD.
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