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1. Introduction

It is now widely believed that ®-dimensional confining gauge theory can be described, in
the infrared limit, by a suitably chosen effective string theory. If the interquark separation is large,
indeed, the relevant degrees of freedom are the oscillations of the confining string worldsheet in
theD — 2 transverse directions to the loop plane.

The Nambu-Goto action, which is proportional to the string worldsheet area, is however con-
sistent under Lorentz covariance only in dimensiondlity: 26; by slightly modifying the action
with the addition of a nonpolynomial term, one gets the actign [
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which fixes the above problem and, while reproducing the Nambu-Goto features, gives physical
predictions in anyp > 3. With the help of open-closed string dualitylin= 3 [2], and from some

exact calculations available in any dimension, it has been argued that these effective theories are,
to some finite order, universal.

The validity of the effective string picture for confinement is strongly related to the phe-
nomenon ofroughening it is exactly when the loop surface can undergo quantum fluctuations
on any length scale that the identification with a bosonic, massless string is possible.

By applying the Riemann zeta function regularisation prescription (to the Nambu-Goto effec-
tive theory), it is possible to work out the functional form of observables such as Wilson loops in
the form of an expansion in the small quantity(& - A), with ¢ string tension ané the minimal
area spanned by the loop conto8. [

This work aims at determining the validity of the universality prediction by comparison with
Monte Carlo data collected in a particular gauge theory, namely the random percolation model. In
the following Sections, the observable of interest is presented in more detail, then a brief description
of the gauge theory is given; afterwards, we describe the technique we used to obtain the data, and
the results and conclusions that we drew.

2. The Polyakov-Polyakov correlation function

We focused on the behaviour of the Polyakov-Polyakov correlation function at finite tempera-
ture in a(2+1)-D system. That is, the lattice isla x Ly x L slice, withLy andLy large enough to
represent the spatial extent dne- % the inverse temperature. We considered a couple of Polyakov
loops orthogonal to the spatial direction and at a distanétattice spacings; the (connected) cor-
relation function in this case is denoted witR(0)P*(R) ).

Since the subleading terms in the correlator are a shape effect rather than exhibit a size de-
pendence, we introduce the aspect ratio of the cylinder bounded by the loops and the sides of the
lattice:

_ iL . — 2TWiT
T=on q=e"". (2.1)
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The Polyakov-Polyakov correlator is then expected to follow the next-to-leading order (NLO)

prediction
(D-2)m2L[2E4(1)—E3(7)]
e—CL—O'RL— BT S

n(7)P-2 ’
where the functions; (Dedekind eta)E, and E4 (second and fourth Eisenstein functions) are
defined by:
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the functionso;i(n) here represent the sum of théh powers of all divisors of. This functional
form for < P(0)P*(R) > is expected to be universal, to this order, for a wide variety of string
functionals in the Nambu-Goto familyi].

A direct numerical observation of these extremely fine corrections is, in most lattice gauge
theories, unfathomably beyond any computational possibility. However, by choosing a particu-
larly simple gauge model, a better numerical accuracy can be reached and the prediction can be
adequately tested. This has been done on the three-dimengjagealige model ing].

3. The random percolation model

In this work, the model we chose as laboratory is the random percolation model. By suitably
defining the observables, indeed, it can be shown that this theory, although remaining somewhat
peculiar, behaves exactly as expected in a ordinary confining pure gauge thlediyi$ interpre-
tation is supported by a number of theoretical arguments (such as the center vortex picture for con-
finement and the reformulation of the dual gauge system in terms of Fortuin-Kasteleyn clusters) as
well as many numerical evidences concerning physical expectations (universal ratios, string tension
scaling, glueball spectrum and so on). Nevertheless, the percolation model is somewhat particular,
having a trivial partition function and gauge group=£ 1 andG = {e}); indeed it can be thought
of as theqg — 1 limit of the g-state Potts model.

The important aspect is that, as will be shown in the next Sections, even though the explicit
formulation of the model does not involve strings at all, clear signals of a rough string behaviour
are identified. It is already known that in this model a loop obeys the predicted functional form
at least at the leading-order (LO); the question we address here is whether the model confirms the
expected universality even at the NLO.

In the (bond-)percolation model, each link of the lattice is independently st ¢o off ac-
cording to some fixed probabilitp, which plays the role of a coupling constant. Given a lattice
geometry, there exist a critical valy®, corresponding to the sudden appearance of an infinite
connected cluster; this is a second-order transition point and will represent the deconfinement tran-
sition, which can be easily mapped to a finite-temperature transitibn=al because the critical
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threshold depends on the temperature (thought as the inverse extension of the lattice in the periodic
direction).

The starting point in this pure gauge framework is the definition of loop observables: given a
loop with contoury, the value of the associated Wilson loop (or any other object, such as a couple
of Polyakov loops) is defined as:

W(y)=1 <= no clusteris topologically linked to the contoyr (3.2)
W(y)=0 <= otherwise (3.2)

From this definition follows naturally an area/perimeter law for large enough loops, which distin-
guishes between the confingal % p;) and deconfinedd < pc) phases of the theory, providing in
the former a well-defined string tension apdiependent critical temperature that scale according
to

6 = S(p—pc)?, (3.3)
Te = To(p—pc)"- (3.4)

The value of a loop, moreover, is insensitive to changes in the configuration that do not alter
the loop structure; this is a sort of gauge invariance of the theory, besides drastically reducing the
computational effort required for numerical investigations.

4. Methodology

We worked on a cubic lattice of size 128 L, whereL is the periodic inverse temperature.
For each choice of the occupation probabifbt;porresponding to some deconfinement temperature
Te = 1/L¢, we took systems at various temperatures in the rd}@eT ST

For each of these systems, we measye(D)P(R) ) (the dagger can be dropped, since this
theory deals only with real loop values), varying the distance between the two Polyakov lines from
Ro to Rmax; the data are unbiased by the spatial finiteness of the system up to at least half of the
system size, and we safely chd&ge= 8, Rnax = 50.

The expectation value of a Polyakov loop couple is defined in terms of topological linking with
the rectangle (periodic in one direction) which has the loops as boundary; once enough numerical
accuracy is reached, then, it is possible to fit the data sets ta.Extracting the string tension
by looking at a plateau in the choice of the fit interval.

As for the dependence of the string tension from the temperdtutel/L, from the same
Eq.2.2it is possible to find that, for asymptotically lar&e

T 2 1

@——726L4+ﬁ(1/L6) ; L=5,Row; (4.1)

o(lL)=0-
here, the symbob (L) denotes the physical quantity that scales well with the temperature, while
o is only a parameter in the fit that will be attempted to check this temperature scaliwguld
represent the zero-temperature string tension (thought of as a functi@nifothe above NLO

formula were exact.
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We chose to focus our attention on two valuesPoft 51: 0.272380 (critical for ¥T = 6),
we considered the temperatures in the range £ 7,...,15, while atf)g: 0.268459 (critical for
1/T =7), we examined AT =8,...,151

To reach an acceptable statistics, we collected data fronediifigurations for each value of
5, L. For different blocks of 8 values & we used independently-generated configurations.

There is another signal that the theory is in the rough phase: the quantity
o(T) . (= Te—T

()= 5 t="¢

4.2)

should be a universal ratio with no adjustable parameters, that is, it is supposed not to vary for
different realisations of the transition (meaning different choicedarfid the corresponding).

4.1 Algorithm

Due to the particular nature of the random percolation model, each configuration can be gen-
erated independently from scratch, by simply filling an empty lattice with links that are randomly
switched on. The tricky part is the measurement of the topological linking of the resulting cloud
with a given surface; to this end, the first thing to do is to “clean up” the configuration, getting
rid of dead ends and simply-connecting bridges between loop structures. This is done once for the
whole configuration.

On this “minimal gauge” configuration, then, the loop is measured in all possible spatial po-
sitions with the technique of reconstructing each time the clusters in the configuration (by means
of the Hoshen-Kopelmann algorithm) keeping track of the crossings of the loop surface, to detect
nonzero winding numbers.

5. Data and results

We tried to fit the measured correlation functions to E@. for temperatures far enough from
the deconfinement poinL (greater than 9 f051 and 8 forf)z), and large enough distancd®¥ 8
and R > 9 respectively), the NLO formula works well and gives reliable plateau for the string
tensionso (Fig. 1).

The quantitiess thus obtained can be inserted in the asymptotic formuld o reconstruct
the physical quantitys(T) = o(L). However, since the expansion is truncatedsgt —%), the
precision of the data allows to observe a residual dependenic€Fig. 2).

One can then look for the next term in the corrections, keeping in mind that the predicted uni-
versality will not be valid any more beyond the NLO. So, we made, for this first model-dependent

term, the Ansatz

2 3

b1 T T
62 720L4 | CoZL®
in which a new parametet, has appeared.

By fitting the data sets with this functional form, we could well identify stable values both

for the “true” zero-temperature string tensionfT = 0;5) and the coefficienC in the L=° term
(moreover, the two results f@ are compatible, as one would have hoped):

o(l)=0— +0(1/L8), (5.1)

INote that the zero-temperature critical point is locatep:é0) ~ 0.248812.



Universal properties of the confining string in the random percolation model Stefano Lottini

[T T T [O 128x128x7
0.008 00k 7|5 128x128x¢
1 128x128x¢
119 1%
i ] X 128X
oo 117 Daaoad
- ----:-n-nn-n-n ¥ %%giggi%
0.014F : #
) at. 10
p=0.272380
0.013 R =50
s C ST E RS EEEEEe e e s .
L ] NLO

10 15 ‘F‘zéo‘ L

min

Figure 1: Zero-temperature string tensioo®btained with the NLO formula aﬁl at different temperatures.
The quantityRy, denotes the lower end of the fit interval, the upper one being fixed to 50. Note that, for
large enough values ¢&f a plateau appears quite soon.
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Figure 2: Temperature dependence, 15{ of the physical string tensioa(T) (squares) and of the fit
parametew (circles), from which the former is extracted.
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As a circular check, we inserted this non-universal correction irkExjand re-fitted the data
sets: the plateaux for different temperatures (as long as they are not too close to the critical point)
now coincide, confirming the estimates fm(f)) (Fig. 3).

We could also confirm that the adimensional rétjb) of Eq.4.2, as a function of the reduced
temperature, indeed does not depend of the choi&aaﬁﬁ expected in any confining theory in the
rough phase (Figd).

6. Conclusions

In this work the universality of the string behaviour up to the NLO has been numerically
proven in a particular realisation of a confining gauge system in the rough phase. In the percolation
model we have confirmed that the Polyakov-Ployakov correlation function follows the expected
behaviour; moreover, we could identify the first model-dependent correction in the behaviour of
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Figure 3: String tensions plateaux obtained with tiéL—®) formula for ( P(0)P(R) ), for the data ap;.
Now the position of the plateau is temperature-independent.
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Figure 4: Behaviour of the universal ratib(t) for the two examined values % Note that the function
does not fall to zero exactly at = Te.

o (L) with a stable coefficieAt

The universality off(t) confirms the validity of the string picture in this model (for large
enough interquark separations). However, the functidindoes not seem to drop to zero at exactly
T =Tc. This should be due to the fact that, approaching criticality, the algorithm used has to include
all topological classes of configurations. A further analysis on this aspect could be carried on.
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2The coefficien€ appears compatible with the integer 300, suggesting it comes, as expected, from some multiplicity
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this issue.



