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Theories with noncommutative space-time coordinates represent alternative candidates of grand

unified theories. We discuss U(1) gauge theory in 2 dimensions on a lattice with N sites. The

mapping to a U(N) one-plaquette model in the sense of Eguchi and Kawai can be used for

computer simulations. We are discussing the formulation and evaluation of topological objects.

We performed quantum Monte Carlo simulations and calculated the topological charge for

different matrix sizes and several values of the coupling constant. We constructed classical

gauge field configurations with large topological charge and used them to initialize quantum

simulations. It turned out that the value of the topological charge is decreasing during a Monte

Carlo history. Our results show that the topological charge is in general supressed. The situation

is similar to lattice QCD where quantum gauge field configurations are topologically trivial and

one needs to apply some cooling procedure on the gauge fields to unhide the integer number of

the instantons.
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1. Motivation

In noncommutative geometry, where the coordinate operators x̂µ satisfy the commutation re-
lation [x̂µ , x̂ν ] = iθµν , a mixing between ultraviolet and infrared degrees of freedom takes place [1].
So lattice simulations are a promising tool to get deeper insight into noncommutative quantum field
theories. In this work we have studied noncommutative U(1) gauge theory on a two-dimensional
torus. The advantage of this theory is that there exists an equivalent matrix model which makes
numerical calculations feasible [2].

The main topic of the underlying contribution is to study the topological charge in two-
dimensional noncommutative U(1) gauge theory. The instanton configurations carry a topological
charge q which is non-integer in this case [3]. We performed Monte Carlo simulations with dif-
ferent values of the coupling constant β and looked at the topological charge q in the equilibrium
[4].

2. Topology and Instantons in QCD

The Lagragian of pure gluodynamics (the Yang-Mills theory with no matter fields) in Eu-
clidean spacetime can be written as

L =
1

4g2 Ga
µνGa

µν (2.1)

where Ga
µν is the gluon field strength tensor

Ga
µν = ∂µ Aa

ν −∂νAa
µ + f absAb

µAc
ν (2.2)

and f abs are structure constants of the gauge group considered. The classical action of the Yang-
Mills fields can be identically rewritten as

S =
1

8g2

∫

dx4(Ga
µν ± G̃a

µν)2 ∓
8π2

g2 Q (2.3)

where Q denotes the topological charge

Q =
1

32π2

∫

dx4Ga
µνG̃a

µν (2.4)

with
G̃a

µν =
1
2

εµναβ Ga
αβ (2.5)

3. Definition of the Topological Charge in Two Dimensions

3.1 Lattice Regularization of Noncommutative Two-Dimensional U(1) Gauge Theory

The lattice regularized version of the theory can be defined by an analog of Wilson’s plaquette
action

S = −β ∑
x

∑
µ<ν

Uµ(x)?Uν(x+aµ̂)?Uµ(x+aν̂)†
?Uν(x)† + c.c. (3.1)
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where the symbol µ̂ represents a unit vector in the µ-direction and we have introduced the lattice
spacing a. The link variables Uµ(x) (µ = 1,2) are complex fields on the lattice satisfying the star-
unitarity condition. The star-product [1] on the lattice can be obtained by rewriting its definition
within noncommutatiuve derivatives in terms of Fourier modes and restricting the momenta to the
Brillouin zone.

Let us define the topological charge for a gauge field configuration on the discretized two-
dimensional torus. In the language of fields, we define the topological charge as

q =
1

4πi ∑x
∑
µν

εµνUµ(x)?Uν(x+aµ̂)?Uµ(x+aν̂)†
?Uν(x)† (3.2)

which reduces to the usual definition of the topological charge in 2d gauge theory

q =
1

4π

∫

d2xεµνGµν (3.3)

in the continuum limit.

3.2 Matrix-Model Formulation

It is much more convenient for computer simulations to use an equivalent formulation, in
which one maps functions on a noncommutative space to operators so that the star-product becomes
nothing but the usual operator product, which is noncommutative. The action (3.1) can then be
written as

S = −Nβ ∑
µ 6=ν

tr
{

Ûµ (ΓµÛνΓ†
µ)(ΓνÛ†

µΓ†
ν)Û†

ν

}

+2βN2 (3.4)

= −Nβ ∑
µ 6=ν

Zνµ tr
(

Vµ Vν V †
µ V †

ν

)

+2βN2 (3.5)

where Vµ ≡ ÛµΓµ is a U(N) matrix with N the linear extent of the original lattice. An explicit
representation of Γµ in the d = 2 case shall be given in Sec. 5. This is the twisted Eguchi-Kawai
(TEK) model [5], which appeared in history as a matrix model equivalent to the large N gauge
theory [6]. We have added the constant term 2βN2 to what we would obtain from (3.1) in order to
make the absolute minimum of the action zero.

By using the map between fields and matrices, the topological charge (3.2) can be represented
in terms of matrices as

q =
1

4πi
N ∑

µν
εµν tr

{

Ûµ (ΓµÛνΓ†
µ)(ΓνÛ†

µ Γ†
ν)Û†

ν

}

(3.6)

=
1

4πi
N ∑

µν
εµνZνµ tr

(

Vµ Vν V †
µ V †

ν

)

(3.7)

(3.8)

4. Numerical Results for the Topological Charge in the TEK Model

We have computed the topological content of gauge field configurations produced by quantum
Monte Carlo simulations. In Fig. 1 we display scatter plots of the action S without a factor of

3
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Figure 1: Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-axis) for a
Monte Carlo simulation (cold start) at N = 25 and β = 0.78125,1.5625 and 3.125.

Figure 2: Distribution P of the topological charge q in the Twisted Eguchi-Kawai model for N = 25 and
β = 0.78125,1.5625 and 3.125.

β in its definition Eq. (3.5) and the topological charge q performing a cold start. The size of
the matrix is N = 25 and the values of the coupling β are chosen to yield a non-commutativity
parameter θ = 2.55,1.27,0.63, respectively. One observes a decrease of the action with increasing
β due to stronger coupling of the matrices in analogy to lower temperature in an Ising model. The
importance sampling of the system with smaller action generates smaller values of its topological
content. This can also be seen from the distributions of the topological charge in Fig. 2 where the
peaks become narrower with increasing β . Similar plots have been obtained for a larger matrix size
N = 35, for more results see Ref. [4]. To compare the topology-action diagrams on the same scale,
we display in Fig. 3 our simulation for N = 25 with all β -values considered in a single plot.

5. Classical Solutions

The classical equation of motion can be obtained from the action (3.5) as [7, 3]

V †
µ (W −W †)Vµ = W −W † (5.1)

where the unitary matrix W is defined by

W = ZνµVµ Vν V †
µ V †

ν (5.2)
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Figure 3: Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-axis) for the
Monte Carlo simulations at N = 25 and β = 0.78125,1.5625 and 3.125, combining different couplings.

The general solutions to this equation can be brought into a block-diagonal form [7]

Vµ =













Γ(1)
µ

Γ(2)
µ

. . .

Γ(k)
µ













(5.3)

by an appropriate SU(N) transformation, where Γ(k)
µ are nk × nk unitary matrices satisfying the

’t Hooft-Weyl algebra

Γ( j)
µ Γ( j)

ν = Z( j)
µνΓ( j)

ν Γ( j)
µ (5.4)

Z( j)
12 = Z( j)∗

21 = exp

(

2πi
m j

n j

)

(5.5)

m j =
n j +1

2
(5.6)

An explicit representation is given, for instance, by the clock and shift operators, Q and P

Γ( j)
1 = Pn j , Γ( j)

2 = (Qn j)
m j (5.7)

For each solution, the action and the topological charge can be evaluated as

S = 4Nβ ∑
j

n j sin2
{

π
(

m j

n j
−

M
N

)}

(5.8)

q =
N
2π ∑

j

n j sin

{

2π
(

m j

n j
−

M
N

)}

(5.9)

Note that the topological charge q is not an integer in general. If we require the action to be less than
of order N, however, the argument of the sine has to vanish for all j. In that case the topological
charge approaches an integer

q ' N

(

∑
j

m j −M

)

(5.10)

which is actually a multiple of N.
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Figure 4: Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-axis) for Monte
Carlo histories at N = 25 with cold starts being topologically trivial, q = 0. The numbers of the classical
topological charges are superimposed.
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Figure 5: Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-axis) for Monte
Carlo histories at N = 25 and β = 1.5625 with starts at q = −25 and −50. The numbers of the classical
topological charges are superimposed.

6. Comparison of Quantum Monte Carlo and Classical Solutions

In the following analysis we compare the classical topological charges taken from Ref. [3]
with our quantum Monte Carlo simulation at N = 25. In Fig. 4 we plot our data for a cold start
from Fig. 3 together with the classical solutions. One sees from the scatter plots that the quantum
simulation reaches only small topological numbers. This brings the situation of QCD into mind
where one has to apply some cooling or smoothing procedure to damp the quantum fluctuations and
get in touch with the integer-valued topological charges. Since a configuration from a cold start is
topologically trivial, we constructed classical solutions and started with them. In Fig. 5 we overlay
the Monte Carlo histories at β = 1.5625 starting with q = −25 and q = −50, respectively, to the
scatter plots of the classical topological charges from Ref. [3]. One observes that the equilibrium
configurations tend to smaller values of q. Remarkably, the equilibration seems to proceed along a
“classical branch”.
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7. Conclusion and Outlook

The diagram of the classical topological charges and the corresponding action from Ref. [3]
allows for much larger values of q. The equilibrium configurations visit only a small part of this
charge-action diagram. Thus we constructed classical gauge field configurations with large topo-
logical charge and used them as start configuration for quantum simulations. It turned out that
the value of the topological charge is decreasing during a Monte Carlo history, preferably along
the classical minima. To summarize, our results show that the topological charge is in general
supressed.

The situation is reminiscent of lattice QCD where quantum gauge field configurations are
topologically trivial and one needs to apply some smoothing procedure on the gauge fields to unhide
instantons. It would be interesting to adapt cooling techniques from QCD to the two-dimensional
noncommutative U(1) theory. At present we are working on this. Even more desirable would be to
tackle the four-dimensional noncommutative gauge theory in order to obtain a realistic comparison
of its topological content with the well-studied topological objects like instantons and monopoles
in QCD.
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