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The Landau gauge gluon propagator:
Gribov problem and finite-size effects ∗
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employs simulated annealing andZ(2)-flips. It finds higher maxima of the gauge functional

compared with those obtained with the standard overrelaxation and leads to systematic deviations
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1. Introduction

Over the years, considerable progress has been made in solving non-perturbative Dyson-
Schwinger equations (DSE) for gauge-variant Green functions, in particular for the covariant Lan-
dau gauge (for a recent review see [1]). Besides the interestin the DSE solutions as input for
Bethe-Salpeter or Faddeev bound state equations, their infrared asymptotics is of importance for a
check for gluon and quark confinement scenarios proposed by Gribov [2] and Zwanziger [3] on one
hand and Kugo-Ojima [4] on the other. These scenarios claim confinement to be intimately con-
nected with a Landau gauge ghost propagator diverging and with a gluon propagator vanishing in
the zero-momentum limit. Such a behavior has been realized with asymptotic power-type solutions
of (truncated) DSE with infrared exponents leading necessarily to a running coupling constant with
a non-trivial infrared fixed point [5]. This behavior has been confirmed independently by studies
of exact renormalization group equations [6] and with stochastic quantization [7]. Recently it has
been even argued that a unique and exact power-like infraredasymptotic behavior of all Green
functions can be derived without truncating the hierarchy of DSE [8]. However, in order to inter-
polate the full momentum dependence from the infrared to theperturbative ultraviolet regime, one
still has to rely on truncations which are hard to control. Very recently, solutions of the truncated
system studied on a finite torus have been presented with a specific finite-size dependence which
smoothly turns into the exact power-like infrared behaviorat infinite volume [9].

This gives us a good motivation to compare with the ab-initionon-perturbative path integral
approach approximated on a Euclidean four-dimensional lattice. The lattice approach has its own
limitations. Numerical simulations can be carried out onlyon a finite lattice. Therefore, for large
momenta close to the inverse lattice spacing we shall encounter discretization effects, whereas
at low momenta we are faced with the limitations of the finite volume as well as with rotational
symmetry violations due to the hypercubic lattice geometry. Moreover, gauge fixing is not unique
resulting in the so-calledGribov problem. It has been argued that the gauge copy dependence
should disappear in the infinite-volume limit if the copies are bounded to theGribov region- the
positivity region of the Faddeev-Popov operator [10]. But on a finite lattice, Gribov copy effects
may influence the infrared asymptotics and therefore, at least partly, be responsible for finite-size
effects. Standard algorithms like overrelaxation (OR) findalways local extrema of the gauge func-
tional. Repeating such an algorithm with random initial gauges one can find better extrema coming
closer to or eventually findingtheglobal maximum -i.e. elements of thefundamental modular re-
gion. We call the copy found after a number of trials which guarantees stable values of the gauge
functional, at least in the statistical average, thebest copy(bc) to be compared e.g. with thefirst
copy (fc). The gauge transformations determined in these gauge fixing procedures are normally
restricted to be periodic. Under these circumstances for the Landau gauge thebc ghost propagator
has been shown to deviate up to 10% fromfc results, whereas the gluon propagator did not differ
within statistical errors [11, 12].

In this contribution we present an improved gauge fixing method which allows to reach con-
siderably higher extrema of the gauge functional than the above mentionedbc OR method. In the
simpler case ofSU(2) we shall demonstrate the gluon propagator to become influenced and to have
a weaker volume dependence in the infrared. We hope that thismethod will allow to check in the
near future whether the gluon propagator really has the chance to tend to zero in the infrared limit.
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The new method relies first on a systematic use of the simulated annealing (SA) algorithm with
subsequent finalizing OR to maximize the gauge functional and second on an enlargement of the
gauge orbits by special non-periodic (modulo elements of the centerZ(2)) gauge transformations,
representing an exact (unbroken) symmetry of the local gauge action. First results obtained with
this method were reported in [13, 14]. Restricting ourselves to the infrared region we present gluon
propagator results here only for one considerably strong bare coupling valueβ ≡ 4/g2

0 = 2.20. The
corresponding lattice scalea is fixed with the string tensionσ = (440 MeV)2 adopting

√
σa= 0.469

[15]. Thus, our largest lattice size 324 corresponds to a volume(6.5 fm)4.

2. Improved gauge fixing

Landau gauge fixing is equivalent to maximizing the gauge functional of a given lattice field{U}

FU [g] =
1

4L4 fU [g], fU [g] = ∑
x,µ

1
2

Tr gUxµ with gUxµ = g(x+ µ̂) Uxµ g(x)† (2.1)

with respect to the local gauge transformationg(x) ∈ SU(2). The SA method generatesg
stochastically with the Boltzmann weightw(g) ∝ exp(− fU [g]/T) , where the “temperature”
T ∈ [Tmin,Tmax] is a technical parameter which has to be lowered (we have chosen equal tem-
perature steps between the lattice sweeps) from a certain value Tmax until g is locked within the
region of attraction of a local maximum. For the local updates of g the heatbath algorithm is used.
After having reachedTmin, OR sweeps are employed until the lattice equivalent of∂µAµ(x) = 0
is reached at allx with a given accuracy. The more slowly the SA cooling processis chosen the
higher should be the probability to reach the global maximum. The method has been very suc-
cessfully applied for the first time for gauge fixing in the case of the maximally Abelian gauge in
Ref. [16]. In order to see in as far the SA method (with finalizing OR) is more efficient than the
only application of the OR algorithm we have selected for each gauge field{U} up to 15 highest
distinct local maximaFi, i = 1,2, . . . . On a lattice 164 atβ = 2.40 they can be well identified with a
sufficiently large number of repetitions with initial random gauges. We measured the probabilities
P(F) for each method to find the valuesF = Fi. The result is shown on the left of Fig. 1. We
compare OR with SA, the latter for various choices of the number of temperature iteration steps.
SA is clearly seen to win even with a number ofO(1000) iterations. An SA iteration costs more
CPU time than the simpler OR sweep. Therefore, one could think a repeated application of OR to
be more time efficient. On the right hand side of Fig. 1 the probability to find the overall maximum
F1 = Fmax is shown versus the average CPU time required for the given version of algorithm. We
see that even with respect to the computing time SA (including finalizing OR) is more efficient to
find Fmax. We are convinced that SA becomes increasingly efficient forlowerβ and larger volume,
respectively. Moreover, we have seen that SA is much improving, when microcanonical steps (in
the following always three) are included after each iteration. In the left part of Fig. 2 we compare
the probabilitiesP(F) of OR with SA for various lower temperaturesTmin. We have measured the
performance parameter introduced in Ref. [17] and defined asG≡ − log(1−P(Fmax))/tr , where
tr denotes the CPU time in arbitrary units. Corresponding estimates for G are shown in the right
part of Fig. 2. For what follows we decided to apply SA withTmin = 0.01 and 1000 iterations with
equal temperature steps always combined with microcanonical sweeps.
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Figure 1: Left: Probability to find the gauge copy with the functional valueFi of rank i = 1,2, . . . for
the SA method with a number of temperature steps varying from1000 to 6000 (for fixedTmin = 0.4 and
Tmax = 1.4). For comparison we show also the result of the standard OR method with one (the “first”)
random copy. Right: The corresponding probability to find the overall highest maximum F1 = Fmax is
shown vs. CPU time required for the SA method with varying number of temperature steps. For comparison
the result for the OR method is shown when repeated with an increasing number of initial random gauges
(curved line). The CPU time unit is the average time the OR method needs for one gauge copy to achieve
the required accuracy of gauge fixing. 37 configurations, each with 50 gauge copies have been considered.

The second feature of our improved gauge fixing procedure areZ(2) flip transformations.
For SU(2) gauge theory, each flip transformation consists of a simultaneousZ(2) flip of all links
Uxµ → − Uxµ throughout a 3D hyperplane at a given value of the coordinatexµ . This is just a
particular case of a gauge transformation which is periodicmoduloZ(2),

g(x+Lµ̂) = zµg(x) , zµ = ±1∈ Z(2) . (2.2)

The procedure is equivalent to search for the best sector (determined by the signs of the four aver-
aged Polyakov loops) among 24 = 16 sectors that provides the highest maximum ofF. In order
to decide which one is the optimal sector, the SA method has tobe applied repeatedly with the aim
to find the best copy within each sector. In practice the procedure can be somewhat simplified (see
Ref. [14]). We will abbreviate the combined gauge fixing method as the FSA (flip-SA) algorithm.

In Table 1 we show the strong effect of the flips on the average gauge functional.F(nc) denotes
the best functional value found with SA fromnc random starts in every chosen flip sector. In case
“SA” we did not apply flips at all,i.e. the Polyakov loop sector is chosen randomly by the Monte
Carlo procedure. In case “FSA” we have searched withinall 16 flip sectors.

3. Lattice gluon propagator results

The combined FSA method, and for comparison also the standard OR method, have been applied to
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Figure 2: Left: Probability to find the gauge copy with the functional valueFi of rank i = 1,2, . . . ,15
shown for the methods OR and SA, for the latter with varying final temperatureTmin = 0.01,0.2,0.4 and
a fixed number of 1000 temperature steps each supplied with 3 microcanonical steps (Tmax= 1.4). Right:
Performance parameterG as defined in the text for the SA method shown as function of thefinal temperature
Tmin. For both figures 33 configurations, each with 50 gauge copieshave been considered forβ = 2.4 and
lattice size 164.

〈F(nc)〉−F0 〈F(nc)〉−F0

SA / FSA nc for 164 for 244

SA 1 1(8) ·10−5 25(4) ·10−5

SA 5 6(8) ·10−5 31(4) ·10−5

FSA 1 32(9) ·10−5 36(4) ·10−5

FSA 2 33(9) ·10−5 38(4) ·10−5

FSA 3 34(9) ·10−5 38(4) ·10−5

FSA 4 34(9) ·10−5 39(4) ·10−5

FSA 5 34(9) ·10−5 39(4) ·10−5

Table 1: The average gauge functionals〈F(nc)〉 with an arbitrary valueF0 = 0.82800 subtracted. For
the lattice sizes 164 and 244 the numbers of investigated MC configurations withβ = 2.20 are 60 and 46,
respectively.

the computation of the gluon propagator at momentumpµ = (2/a)sin(πkµ/L), kµ ∈ (−L/2,L/2]

Dab
µν(p) = 〈Ãa

µ(k)Ãb
ν(−k)〉 =

(
δµν −

pµ pν

p2

)
δ abD(p) , (3.1)

whereÃ(k) represents the Fourier transform of the gauge potentials

Aµ(x+ µ̂/2) =
1

2iag0

(
Uxµ −U†

xµ
)

(3.2)

after the gauge has been fixed.
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Figure 3: Gluon propagator versus momentum and the zero-momentum propagatorD(0), for β = 2.20 and
for various lattice sizes, obtained withfc OR compared withbc FSA. The lattice size is 324.
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Figure 4: The gluon propagator andD(0), obtained withbc FSA gauge fixing, shown in the infrared region
for various lattice sizes (β = 2.20).

Fig. 3 shows the comparison of thefc OR results obtained for several lattice sizes with the
bc FSA result for 324 only. At p= 0 the zero-momentum data pointsD(0) are also plotted. The OR
data exhibit quite strong finite-size effects. Contrary to the OR results the FSA data seem smoothly
to extrapolate to theD(0) data point. In Fig. 4 we show ourbc FSA result for various lattice sizes.
In comparison to OR (see Fig.3) the FSA result shows considerably less finite-size effects down to
the lowest accessible momenta. All data points fall more or less onto a universal curve. This leads
us to hope that the visible plateau indicates the existence of a turning point beyond whichD(p)

starts to decrease forp→ 0.
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4. Conclusions

In this contribution we have discussed an improved gauge fixing method which takesZ(2) flips
into account and makes consequently use of simulated annealing to maximize the Landau gauge
functional. The combined algorithm finds considerably larger functional values. It lowers the
values of the gluon propagator in the infrared in comparisonwith the OR results. Moreover, finite-
size effects seem to become suppressed. They do not show the specific behavior found with DSE
on a finite torus [9]. By further increasing the lattice size we hope to seeD(p) to pass a maximum
and to tend to smaller values in the far infrared. So far, sucha behavior has been found only in the
lower dimensional cases [18, 19].
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