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We investigate the Gribov-Zwanziger scenario in the Coulomb gauge using a SU(3) quenched lat-
tice gauge simulation. The dressing function of the ghost propagator diverges in the infrared limit.
This result is expected from the fact that the Faddeev-Popov eigenvalue density gets concentrated
near the vanishing eigenvalue compared to that in the abelian gauge theory. The turnover of the
transversal gluon propagator is not observed up to the largest lattice volume explored in this study.
The instantaneous part of the time-time component of the gluon propagator which corresponds to
the color-Coulomb potential in the continuum limit diverges stronger than the simple pole. Fur-
thermore, we observe that the ghost propagator show good scaling while both components of the
gluon propagator do not show scaling in the considered range of the lattice spacing.
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Color confinement and the Faddeev-Popov ghosts in Coulomb gauge QCD Yoshiyuki Nakagawa

1. Introduction

To understand the mechanism of color confinement is a challenging issue in particle and nu-
clear physics. There have been several scenarios proposed for color confinement. In the Gribov-
Zwanziger and the Kugo-Ojima confinement scenarios [1, 2] , the Faddeev-Popov (F-P) ghosts
play a significant role in the mechanism of color confinement.

About ten years ago, the Landau gauge study of the gluon and the ghost Dyson-Schwinger
equations (DSEs) revealed that the ghost propagator diverges in the infrared (IR) limit stronger
than the simple pole, and the gluon propagator is suppressed in the IR region and vanishes at
zero momentum [3]. Furthermore, it was demonstrated that the contribution of the ghost loop
in the gluon DSE is crucial for the IR suppression of the gluon propagator. Although the ghost
contribution is numerically small in the perturbation theory, the IR dynamics of the Yang-Mills
theory is dominated by the unphysical ghost degrees of freedom, i.e., ’IR ghost dominance’.

In the Coulomb gauge, the importance of the F-P ghosts and the confinement scenario are more
transparent. The Coulomb gauge is a physical gauge and the Hamiltonian can be decomposed into
two parts,

H =
1
2

∫
d3x

{
(E tr

i )2 +B2
i
}

+
1
2

∫
d3y

∫
d3zρ

a(~y, t)V ab(~y,~z;Atr)ρb(~z, t). (1.1)

The first term represents the energy of the transverse components of the color-electric and color-
magnetic fields. The second part, the instantaneous interaction energy between color charges,
originates from the energy of the longitudinal color-electric fields. ρ is the color charge density

ρ
a = g f abcAb,tr

i Ec,tr
i +ρ

a
quark, (1.2)

and V the kernel of the instantaneous interaction

V ab(~y,~z;Atr) = (M−1[A](−∇
2)M−1[A])ab

~y,~z, (1.3)

whose vacuum expectation value is called the color-Coulomb potential, and M the F-P ghost oper-
ator

Mab = −∂iDab
i = −δ

ab
∂

2
i −g f abcAc,tr

i ∂i. (1.4)

From the partition function with the Coulomb gauge Hamiltonian, one can evaluate the time-time
component of the gluon propagator composed by the instantaneous part and the non-instantaneous
part [4],

g2〈A4(x)A4(y)〉 = g2D44(x− y) = V (~x−~y)δ (x4 − y4)+P(x− y). (1.5)

It was shown by Zwanziger that the instantaneous color-Coulomb potential provides an upper
bound for the static potential and the necessary condition for the static potential being a confining
potential is that the color-Coulomb potential is also a confining potential [5]. Recently lattice QCD
simulation showed that the instantaneous color-Coulomb potential rises linearly at large distances
and it is stronger than the static potential; this is an expected result from the Zwanziger’s inequality
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[6, 7]. Therefore, in the Coulomb gauge, the color confinement is attributed to the instantaneous
color-Coulomb interaction.

In the Gribov-Zwanziger confinement scenario, the strong confining feature of the instan-
taneous interaction originates from the strong long range correlation of F-P ghosts. As Gribov
discussed, the Coulomb gauge does not fix a gauge completely, and the gauge configurations are
restricted to the Gribov region where the F-P operator is positive [8]. On the boundary of the Gri-
bov region, so-called the Gribov horizon, the lowest eigenvalue of the F-P operator vanishes. It
was argued by Zwanziger that entropy favors gauge configurations near the Gribov horizon and the
eigenvalue distribution of the F-P operator gets concentrated near the vanishing eigenvalue com-
pared to that in the abelian gauge theory [9]. Such an enhancement has been observed by the recent
lattice simulations [10, 11]. Accordingly, the ghost propagator becomes more singular than the free
propagator and the IR enhancement of the ghost propagator leads to the long-range interaction of
the color-Coulomb potential which is responsible for the color confinement.

The analysis of the ghost DSE in the Coulomb gauge has revealed that the equal-time trans-
verse gluon propagator vanishes at zero momentum if the ghost dressing function diverges stronger
than 1/

√
|~p| [12]. The vanishing of the equal-time transverse gluon propagator would imply that

gluons have infinite effective mass in the Coulomb gauge, which indicates the confinement of glu-
ons. By contrast, the time-time component of the gluon propagator would diverges stronger than
the simple pole in the IR limit since it contains the instantaneous color-Coulomb potential, which
is responsible for the color confinement.

In this study we perform a lattice investigation of the IR behavior of the ghost and the gluon
propagators in order to clarify the confinement mechanism in the Coulomb gauge. A similar work
done by Voigt et. al has also been reported in this conference [13].

2. Lattice observables

On a lattice, the F-P operator is an 8V3 × 8V3 sparse matrix (V3 is the lattice 3-volume) and
expressed in terms of SU(3) spatial link variables Ui as

Mab
xy = ∑

i
ReTr

[
{T a,T b}

(
Ui(x)+Ui(x− î)

)
δx,y

−2T bT aUi(x)δy,x+î −2T aT bUi(x− î)δy,x−î

]
. (2.1)

The ghost propagator is defined as the vacuum expectation value of the inverse of the F-P ghost
operator,

Gab(~x−~y) = 〈(M−1[A])ab
~x,~y〉 (2.2)

In contrast with the abelian gauge theory, the Green’s function M−1 of the F-P ghost operator
depends on the gauge fields Aa

i . Since the ghost propagator is diagonal in color space, the ghost
propagator in the momentum space can be written as

Gab(~p) = δ
ab ZG(|~p|)

~p 2 . (2.3)

Here ZG is the dressing function of the ghost propagator. The non-trivial momentum dependence
of the ghost propagator due to the quantum correction is encoded in the dressing function.
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The equal-time gluon propagator is given by

Dab
µν(~x−~y) = 〈Aa

µ(~x)Ab
ν(~y)〉 = Dab

µν(~x−~y), (2.4)

and the transversal equal-time gluon propagator in the momentum space can be written as

Dab
i j (~p) = δ

ab
(

δi j −
pi p j

~p 2

)
Dtr(|~p|). (2.5)

The instantaneous part of the time-time component of the gluon propagator is

Dab
44(~p) = δ

ab Z44(|~p|)
~p 2 , (2.6)

which corresponds to the color-Coulomb potential V in the continuum limit.
The lattice propagators depends on the magnitude of the three momentum |~p| and the lattice

cutoff Λ. In this study, the lattice propagators are renormalized multiplicatively at µ = 3 [GeV].

3. Results and discussions

We calculate the ghost propagator and the gluon propagator by the SU(3) lattice gauge sim-
ulations in a quenched approximation. The lattice configurations are generated by the heat-bath
Monte Carlo technique with the Wilson plaquette action. In these simulations we adopt the itera-
tive method to fix a gauge. In order to obtain the ghost propagator we have inverted the F-P matrix
by the conjugate gradient method and used plane wave sources. The details of the calculation will
be published elsewhere.

3.1 Ghost propagator
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Figure 1: The ghost dressing function in the confinement phase. As a renormalization condition, we set
ZG(|~p | = 3[GeV]) = 1.

In Fig. 1 the ghost dressing function is plotted as a function of the magnitude of the three
momentum. Although the finite volume effect is seen at small lattice volume, the propagator shows
good scaling. As is expected in the Gribov-Zwanziger scenario, the ghost dressing function shows
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a divergent behavior in the IR limit, which results in the confining feature of the color-Coulomb
instantaneous interaction.

In order to explore the momentum dependence of the ghost dressing function in the IR region,
we fitted data below 1 [GeV] on 244 lattice at β = 5.80 to the IR power law ansatz

ZG(|~p|) =
c1

(~p 2)γgh
. (3.1)

We found the IR exponent
γgh = 0.29(2), c1 = 1.42(1),

with χ2/nd f = 0.244. The analysis of the ghost DSE in the Coulomb gauge has revealed that
the equal-time transversal gluon propagator vanishes at zero momentum if the ghost IR exponent
exceeds 0.25 [12]. From our result of the ghost dressing function we expect that the equal-time
transversal gluon propagator vanishes at ~p = 0, which indicates the confinement of gluons.

3.2 Equal-time transverse gluon propagator
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Figure 2: The equal-time transverse gluon propagator without (left) and with (right) the cone cut.
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Figure 3: The equal-time transversal gluon propagator at various lattice couplings.
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The lattice simulation results for the transversal gluon propagator are presented in Fig. 2.
We find that the finite volume effect is removed by applying the cone cut [14]. The turnover of
the transversal gluon propagator is not observed up to the largest lattice volume explored in this
study. Fig. 3 shows the transversal gluon propagator at different lattice couplings. We observe that
the transversal propagator does not show scaling and is faced with the strong finite lattice spacing
effect. This has also been observed by Voigt et al. [13].

3.3 Instantaneous part of the time-time gluon propagator
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Figure 4: The instantaneous part of the time-time gluon propagator at various lattice couplings. Both the
cylinder and the cone cut are applied.

The dressing function of the instantaneous part of the time-time gluon propagator is illustrated
in Fig. 4. We see that the dressing function diverges in the IR region, and this is consistent with the
fact that the color-Coulomb potential obtained by measuring the partial Polyakov line correlator
shows a confining behavior. Scaling is not seen for the instantaneous time-time gluon propagator
as well as the transversal gluon propagator. Non-scaling of the instantaneous time-time gluon
propagator was also observed in the SU(2) lattice gauge simulations [15].

4. Summary and conclusion

We investigated the ghost and the gluon propagators in the Coulomb gauge using the quenched
lattice simulations. We found that the ghost dressing function diverges in the infrared limit. Such
an IR divergent behavior of the F-P ghosts leads to the strong long-range instantaneous interaction
which confines color charges. The ghost IR exponent was found to be about 0.29; this implies
the vanishing equal-time gluon propagator at vanishing momentum. The equal-time transversal
gluon propagator does not show turnover up to the largest lattice volume explored in this study.
Both the transversal and the time-time component of the gluon propagators do not show scaling in
the considered range of the lattice coupling constant, and the renormalization procedure must be
reconsidered.
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