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1. Introduction and Motivation

The investigation of the infrared limit of QCD is of central importance for the comprehension
of the mechanisms of quark and gluon confinement and of chiral-symmetry breaking. However,
despite the recent progress, we still do not have the full picture of the infrared structure of Yang-
Mills theories.

In what concerns gluon confinement, in Landau gauge, the infrared behavior of gluon and
ghost propagators is linked with the Gribov-Zwanziger [1, 2] and the Kugo-Ojima [3] confine-
ment scenarios. These confinement mechanisms predict, at small momenta, an enhanced ghost
propagator and a suppression of the gluon propagator. Analytic studies of gluon and ghost propa-
gators using Schwinger-Dyson equations (SDE) [4, 5, 6] seemto agree with the above scenarios.
Schwinger-Dyson equations are an infinite tower of nonlinear equations. Typically, the computa-
tion of a solution requires the definition of a truncation scheme and the parametrization of vertices.
The above mentioned solutions are not the only known solutions. Indeed, in [7, 8] the authors found
a set of solutions which do not comply with the above mechanisms. In what concerns the lattice
results for the gluon and ghost propagators, in Landau gauge, one side they seem to support the
analytical studies [9, 10, 11], on the other side they do not confirm the precise predictions obtained
with SDE [12]. The solution of this apparent puzzle requiresfurther studies.

In the Schwinger-Dyson equations, when dynamic quarks are neglected, assuming thatg2 ∼

1/Nc — as suggested by analysis of the largeNc limit [13] — the SDE predict that gluon and ghost
propagators are independent of the number of colors (in the nonperturbative regime). In particular,
they predict for the gluon and for the ghost propagators an infrared exponent that is independent
of the gauge groupSU(Nc). In this paper, we carry out a comparative study of lattice Landau
gauge propagators for these two gauge groups. Our data were especially produced by considering
equivalent lattice parameters in order to allow a careful comparison of the two cases. For details
on the simulation see [14]. For another study comparingSU(2) andSU(3) propagators see [15].
In the following the effect of Gribov copies is not taken intoaccount.

2. Numerical Simulations

We consider four different sets of lattice parameters, withthe same lattice sizeN4 and the
same physical lattice spacinga for the two gauge groups (see Table 1). The first three cases are
chosen to yield approximately the same physical lattice volumeV ≈ (1.7 fm)4. This allows a
comparison of discretization effects. The fourth case corresponds to a significantly larger physical
volume,V ≈ (3.2 fm)4, in order to study finite-size effects. For all four cases, 50configurations
were generated using the Wilson action.The gluon and the ghost propagators

Dab
µν(k2) = δ ab

(

δµν −
kµkν

k2

)

D(k2) , (2.1)

Gab(k2) = −δ abG(k2) (2.2)

were computed for four different types of momenta:(k,0,0,0), (k,k,0,0), (k,k,k,0) and(k,k,k,k).
In the computation ofD(k2) andG(k2), an average over equivalent momenta and color components
was always performed.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
2
2

SU(2) meets SU(3) in lattice-Landau-gauge gluon and ghost propagators Orlando Oliveira

N4 a (fm) Na (fm) βSU(2) βSU(3)

164 0.102 1.632 2.4469 6.0
244 0.073 1.752 2.5501 6.2
324 0.054 1.728 2.6408 6.4
324 0.102 3.264 2.4469 6.0

Table 1: Lattice setup. The lattice spacing was computed from the string tension, assuming
√

σ = 440
MeV.

0 1 2 3
0

10

S
U

(3
) 32

4

24
4

16
4

Renormalized Gluon Propagator
renormalization scale = 3 GeV

0 1 2 3
0

10

S
U

(2
)

Figure 1: Gluon propagator as function of momenta given in GeV for lattices with volumeV ≈ (1.7 fm)4.

In order to compare the propagators from the different simulations, the gluon and ghost prop-
agators were renormalized accordingly to

D(q2)
∣

∣

q2=µ2 =
1

µ2 , G(q2)
∣

∣

q2=µ2 =
1

µ2 , (2.3)

usingµ = 3 GeV as a renormalization point. The lattice data were interpolated (using splines) to
allow the use of such a renormalization point in all the simulations.

3. The Propagators

The gluon propagator forV ≈ (1.7 fm)4 is reported in figure 1. In figure 2, the data for different
volumes, sameβ value is displayed. The corresponding figures for the ghost propagator are fig. 3
and fig. 4, respectively.
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Figure 2: Gluon propagator as function of momenta given in GeV forβSU(3) = 6.0 andβSU(2) = 2.4469.

For the gluon propagator, figure 1 show some discretization effects which are stronger for the
SU(3) data. On the other hand, figure 2 shows finite volume effects, specially for SU(2). In order
to try to understand such effects, in figure 5 one plots the ratios of SU(3) over SU(2) propagators
for all the simulations. Note that the plots include ratios of D(0), i.e. the most left point should
be taken with care. In what concerns the gluon propagator, given the relatively small statistics and
given that there is no clear systematics in data, one can not conclude on the nature of observed small
differences. Anyway, the SU(3) and SU(2) propagators are, at least, qualitatively similar. Given
the small differences one can also claim quantitative agreement between the two propagators.

In what concerns the ghost propagator, the data seems more stable than the gluon points.
Indeed, comparing figures 1-4 and the ratios of propagators in fig. 5, fig 6 the ghost data fluctuates
less. Moreover, for the full range of momenta the ratios of ghost propagators are compatible with
one at the level of two standard deviations. Therefore, for the ghost propagator one can conclude
in favour of quantitative and qualitative agreement between SU(2) and SU(3).

4. Results and Conclusions

In summary, considering a careful choice of the lattice parameters, we were able to carry out an
unambiguous comparison of the lattice Landau gluon and ghost propagators forSU(2) andSU(3)

gauge theories. The data show that the two cases have very similar finite-size and discretization
effects. Moreover, we find very good agreement between the two Yang-Mills theories (for our
values of momenta larger than 1 GeV), for all lattice parameters and for all types of momenta.
Below 1 GeV, the results for the two gauge groups show some differences, especially for the gluon
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Figure 3: Ghost propagator as function of momenta given in GeV for lattices with volumeV ≈ (1.7 fm)4.
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Figure 4: Ghost propagator as function of momenta given in GeV forβSU(3) = 6.0 andβSU(2) = 2.4469.
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Figure 5: SU(3)/SU(2) gluon propagator as function of momenta given in GeV.
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Figure 6: SU(3)/SU(2) ghost propagator as function of momenta given in GeV.
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propagator. However, given the lattice volumes considered, further studies are required before
drawing conclusions about the comparison betweenSU(2) andSU(3) propagators in the deep-IR
region. In this sense, we claim that our results support the prediction from the Schwinger-Dyson
equations that the propagators are the same for allSU(Nc) groups in the nonperturbative region.
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