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1. Introduction and motivation

The investigation of the Landau-gauge gluon propagator
quq
Di(q) = &% (%—%) D(q?) (1.1)

in lattice QCD dates back to more than 20 years. Despite thaefmade by a number of authors,
there are questions which remain to be answered. For largeemia, let us say > 2 GeV, the
results from different groups provide a consistent pictoféhe propagator and agree well with
calculations performed using other non-perturbative ieges. On the other hand, the infrared
limit is still an open issue and has been a field of intensearekein the last years (see the con-
tributions to this conferencee.g.[1], and references therein). From the point of view of tati
simulations, the questions to be answered yet are numeralisanetimes are even not easy to
handle with. For example, it is still under debate how to deith the Gribov ambiguity in lat-
tice simulations, and how close present lattice data comeitmlau-gauge gluodynamics in the
continuum and infinite-volume limit.

In order to access the infrared limit of the gluon propagdteo of us (O.0. and P.J.S.) recently
proposed and explored the use of large asymmetric latt2e3, 4],i.e. L3 x T with T >> L. The
price of relying on such kind of lattices are the control, be flack of it, of additional finite-
volume effects coming from a breaking of t@g symmetry, a remnant of th®(4) continuum
symmetry on a symmetric hypercubic lattice. When previduslies on symmetric lattices have
shown strong finite-volume effects in the infrared regiofy fhe situation is more dramatic for
asymmetric lattices. For example, there the gluon dredsingtion Z(g?) = ¢°D(g?) computed at
equal time-like and spatial momenta are not necessarilypatityie within pure statistical errors in
the low-momentum region.

On the other hand, the access to very low momenta is much morpwtationally intensive in
simulations on symmetric lattices compared to those on amstnic ones. Therefore, if somehow
the asymmetry-induced finite-volume effects were brougtuten control, data at much lower mo-
menta than currently available could be obtained. Inddwe still the infinite volume limit has to
be taken, but in a situation where more data were availalteciinfrared momentum region.

Having now access to a considerably larger spatial voluméehi® asymmetric case, in this
study we report on some first results obtained comparing alatsymmetric and asymmetric lat-
tices, namely 16x 256, 18 x 256, 32 x 200 and 32. In particular, we look for regions in the
lattice momentum space where the differences betweenlti@mend spatial momenta disappear
and where not. For our simulations we use the standard Wisoige action with3 = 6.0 fixed.
This value corresponds to an inverse lattice spacing oftadnou= 1.94 GeV. To relate our data at
the different lattice momenta to their continuum counteipave use

2 . /mn

Qu = —sm(—“), n,=01,...,L,—1, (1.2)
a Ly

wherelL, is the lattice extent in directiop. Definitions and details on the gauge fixing are given

in [7] and for the 32 x 200 data in [8]. In the following, whenever possibleZaaverage over

equivalent momenta is performed.
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Figure 1. The gluon dressing function on a3 200 lattice. The different momentum cuts are discussed
in the text.

2. Asymmetric lattice: 323 x 200

The gluon propagator and dressing function were computed@%3oconfigurations using a
328 x 200 lattice. The data shows discretization effects simitathose seen in the symmetric
lattices. Indeed, it is well-known that for momenta abque 1 GeV the propagator is not a simple
function ofg? = qf, alone. The traditional approach is to apply momenta cutwf6th reduce the
dependence of the propagator and the dressing functionhensj (in our caseZz) invariants to a
unique curve. This is better seen in the gluon dressing immctn order to illustrate this effect, in
Fig. 1 we plot the gluon dressing function for different ates of momenta (purely time-like and
different cuts of spatial momenta).

The plot shows that, within our limited statistics, therevésy good agreement between the
dressing functions computed using purely spatial on-axispairely temporal momenta. The figure
does not include the dressing function for all purely spatiamenta. However, in what concerns
the purely spatial momenta, the gluon dressing functionofoiaxis momenta evolves typically
along the lower edge of the spatial (including off-axis) nestum data. The diagonal choice of
momenta,i.e. the cylindrical cut [6] wheren, ~ £n, (see the left plot in Fig. 1) picks up an
unique propagator which is slightly above the propagatotie on-axis choice for momenta @t
larger than~ 1 GeV. Note that this “democratic” choice of momenta has lsexessfully used to
suppress discretization effects such that data from diffevolumes and lattice spacings match at
larger momenta.

In the right plot of Fig. 1 we also show two naive generalizasi to the asymmetric case of
the on-axis case and of a “democratic” choice of momentadyfiader cut), labelled ag111X)
and (1116 cuts. The former includes momenta only of type= (+1,4+1,+1,+n) with ny =
0,1,...,T /2 (softening of on-axis momenta), while the latter includesnenta defined around the
directionny = (£n,£n,+n,+6n) withn=0,1,...,L—1 andn; = n,n+1,n+2. This direction is
close to the diagonal in the elongated volume (rememberTtfat= 6.25). Note that th¢111X)
cut reproduces the results of the symmetric lattice for theaxis choice of momenta, while the
(1116 cut follows the symmetric lattice data for the cylindricaldaconical cuts. Given that the
cylindrical and conical cuts seem to reduce the finite-vausifects for momenta above 1 GeV,
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Figure 2: The gluon dressing function for a $2attice is shown on the left hand side. The right figure
compares the same data with those on %3200 lattice. Different cuts have been applied to the data.

Fig. 1 suggests that for the asymmetric lattices one shaédhe(1116) cut, or a variant of it, for
that momentum region.

3. Symmetric lattice: 32*

The gluon dressing functioB(g?) = ¢°D(g?), computed for an ensemble of 50 gauge config-
urations on a 32lattice, is given in the left plot of Fig. 2 applying variousts. The lattice data
shows similar discretization effects as for the asymmdditicce. This is illustrated in the right plot
of the same figure. There, data for the two lattice$ &2d 32 x 200 are shown for two different
momentum cuts at larger momenta and good agreement is fddondeover, within our limited
statistics, the cuts produce similar effects for both ¢ati where the on-axis data lie in both cases
systematically below cylinder-cut data fgr- 2 GeV.

In Fig. 3 the lattice gluon dressing function for 332200 and a 32lattice are compared for
momenta below 2 GeV. Again, two different cuts (on-axis ayilthdrical) are considered. We find
that in this momentum range the dressing functiéfi) for the two lattice geometries are in good
agreement, even though we cannot compare at the low-lyingenta. A comparison with data
from larger symmetric lattices is necessary to become mondident in this. At least, the good
matching between 0.5 GeV and 2 GeV is encouraging in whatezascthe use of asymmetric
lattices to extract reliable infrared properties in futlattice simulations.

4. Theimpact of the spatial volume

Now we discuss the volume dependence of the propa@dtps~ 0) as function of the physical
momentuny. In Fig. 4 we compare the gluon propagator on one hand and#ssidg function on
the other hand for various asymmetric lattices, fot @l at 3 = 6.0) and for the continuum Dyson-
Schwinger solution of Ref. [10]. All propagators were rematized according to the condition

1

D(qz)‘qzzuz = F» (4.1)
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Figure3: The gluon dressing function at low momenta for thé 8ad the 32 x 200 lattices for two different
momenta cuts.
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Figure4: The gluon propagator (left) and the gluon dressing fundtimit) for various asymmetric lattices
and for 32 at 8 = 6.0 . compared with the DSE solution.

with the choiceu = 3 GeV. For asymmetric lattices, the data is for time-like-éotis) momenta.
For the symmetric lattice, the plot includes only on-axismenmta. Fig. 4 shows that the two results
become closer as the lattice volume increases.

5. Fitting the IR gluon dressing function

In previous investigations it was verified that the lattibeog dressing function and the contin-
uum Dyson-Schwinger solution are well described not by & awer law but by both functions

2K 2\ 2K
2 (9%)

@

Z/(of) = w< = (5.1)
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Lattice  Omax K A x?/d.o.f. # conf
16°x 256 664 0609035 4095  0.71 155
18x256 711 0632035 3897  1.14 150
38x200 728 0632715 46533 1.28 39

Table 1. Parameters corresponding to a fit of the lattice gluon dngsinction according t@, (9?). Omax
andA are given in MeV.

Lattice  Qmax K A x?/d.o.f. # conf
16x 256 664 065077715 409'3  0.69 155
18°x 256 711 062663 3913  1.09 150
38x200 728  05287° 46435 1.16 39

Table 2: Parameters corresponding to a fit of the lattice gluon dngsinction according t@ (9°). Omax
andA are given in MeV.

for momenta below~ 700 MeV.

The results of fitting the lattice dressing function for guremporal momenta witld; andz;,
are reported in tables 1 and 2, respectively;xis the highest momentum included in the fits. Note
that, the exponemt agrees within one standard deviation for the two largestweals. Furthermore,
for these latticesk agrees with the estimate of O.O. and P.J.S.43}; 0.53, from using ratios of
propagators to suppress the volume dependence. The ratimangiscussed in [3], if applied to
the 32 x 200 data, estimates = 0.565- 0.040 for the infrared exponent.

The results givex consistently above.B. If this really represents the infrared asymptotics, it
supports a vanishing — 0 limit of the gluon propagatad(q # 0). Moreover, one should keep in
mind that the fits to a pure power law provide always & 0.5, with k increasing with the lattice
volume. It should be noted, however, that so far lattice &atmns have always reported a finite
and not vanishing gluon propagator at zero momentum [12].

6. Resultsand Conclusions

In this work the gluon propagator and dressing function Feentanalysed for various asym-
metric lattices and a comparison to*3ata has been done. Despite the observed finite-volume
effects, for volumes as large as®32 200 the dressing functio(g?) for purely temporal mo-
menta agrees well, within the available statistics, withd¢brresponding function for purely spatial
on-axis momenta.

In what concerns the 32 200 and 32 data, the momentum cuts produce similar results for
the full range of momentd,e. the gluon propagator/dressing function for on-axis momaere
systematically below cone-cut or cylinder-cut datados 1 GeV.
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The behaviour of the lattice infrared gluon dressing fumc# (g?) is well described by the two
ansatze, andz, for g < 700MeV. The fits to the data provide values which support a vanishing
zero momentum limit of the gluon propagator for all the 8 reported here. The measurement
of the infrared exponert for the two larger lattices suggests a vakie- 0.53, in agreement with
the estimate discussed in [3].
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