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Coulomb gauge Green functions and Gribov copies in SU(2) lattice gauge theory Markus Quandt

1. Introduction

Yang-Mills theory in the Coulomb gauge has recently drawn a renewed attention, both in the
continuum [1, 2] and on the lattice [4, 5, 6]. In the continuum at least, this interest is mostly due
to the remarkable fact that Gauß’ law can be resolved explicitly in Coulomb gauge, which gives
the remaining vector potentialA a very intuitive notion similar to electrodynamics [8]. Recent
variational approaches in the Schrödinger picture even support the idea of aconstituent gluon[1, 2],
which is almost non-interacting in the infrared and thus completely determined byits dispersion
relationω(p), i.e. the (inverse) equal-time gluon propagatorD(p) = 1

2ω(p)−1.

The obvious drawback of the Coulomb gauge is thatmanifestLorentz invariance is lost at inter-
mediate stages; it may only be recovered at the end of the calculation. Perturbatively, this problem
is reflected in the (tree-level) propagators of some fundamental fields, which are instantaneous in
time so that many loop integrands are independent of the temporal loop momentumcomponent
k0. Such integrals are notoriously difficult to regulate with conventional techniques, though they
are believed to cancel in the full theory [8]. Still, the issue of renormalisationin Coulomb gauge
remains cumbersome, even at the one-loop level [9].

Similar problems arise on the lattice as well. While initial studies of the gluon propagator
in Coulomb gauge displayed almost perfect scaling [4, 5], recent studiesusing improved gf. tech-
niques indicate that the quality of gauge fixing has a significant impact on Green functions; in
particular, substantial scaling violations may result [6]. The same conclusion has been drawn ear-
lier in Landau gauge, where careful gauge fixing may alter the infrared behaviour of the propagator
quantitatively by as much as 20 % [7].

Even more severe descrepancies arise in the comparision of early lattice results with the vari-
ational approach mentioned above. While both methods show good agreement in D = 2+1, their
results inD = 3+1 differ qualitatively, both in the infra-red and the ulta-violet:

IR UV

lattice [4, 5] D(p) → const D(p) ∼ |p|−
3
2

variation [1] D(p) → 0 D(p) ∼ |p|−1

All these findings emphasise the need for a thorough corroboration of lattice results in Coulomb
gauge, in particular with regard to the quality of gauge fixing. In the present talk, I will present
the first results in this program, viz. the equal time gluon propagator inD = 2+1 andD = 3+1.
Further studies on the ghost propagator and the Coulomb form factor arecurrently underway and
will be presented elsewhere.

The plan of this talk is as follows: In the next section, I will briefly discuss our gf. techniques
and demonstrate that they are effective in reducing the Gribov problem which is at the heart of
most gf. issues. Section three presents our findings for the gluon propagator. Some of this data
is still preliminary, and so is the quantitative analysis, but our results so far imply both scaling
violations in the UV and a significant suppression in the IR. The last point improves the qualitative
agreement with variational studies, although the quantiative agreement is stillunsatisfactory. In the
last section, I will conclude with a brief summary and outlook.
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2. Gauge fixing techniques

Coulomb gauge on the lattice can be defined as the maximisation of the functional1

Ft [U ] ≡
1

3V3
tr ∑

x

3

∑
i=1

1
2

trUi(x, t)
!
= max, V3 ≡

3

∏
i=1

Ni . (2.1)

Here,Uµ(x) are the link variables, the sum overx runs over all sites in a fixedtime-slice t= const
and the maximisation is along the gauge orbit, i.e. with respect to all gauge rotations Ω(x, t) of the

link field Uµ(x). As indicated, the Coulomb conditionFt
!
= max can be implemented at each time-

slice t independently. This leaves a residual invariance of space-independent but time dependent
gauge transformationsΩ(t), i.e. a global gauge rotation in every time slice.

For the equal-time gluon propagator2

D(p) ∼
∫

d3xei p·(x−y)
3

∑
i=1

3

∑
c=1

〈Ac
i (x, t)Ac

i (y, t)〉 = |p|−1 +O(h̄) (2.2)

the residual gauge fixing is irrelevant and it is sufficient to fix only the time slice in which the
measurement is taken. This is no longer true for other correlators such astheA0−A0 propagator
related to the static Coulomb potential. Moreover, recent perturbative studies [9] indicate that
possible scaling violations inD(p) may be attributed to the loss of covariance at equal times; it will
then be necessary to consider the full gluon propagator at all (unequal) times, and Coulomb gauge
fixing at all time slices must be augmented by a suitable choice for the residual symmetry.

The Gribov problem, which is at the heart of most g.f. issues, can be expressed as the fact
that (2.1) has manylocal maxima which may, however, give inequivalent contributions to non-
gauge invariant quantities such as the Green functions. Uniqueness canbe enforced by searching
for the global maximum of (2.1), an NP-hard problem. Our strategy to reduce the influenceof
Gribov copies is to prepend the standard (over)relaxation algorithm by aninitial preconditioning
step combined with multipleGribov repetitionsfrom random starts. This method is a less expensive
substitute for full simulated annealing and works well for small to medium size volumina up to
V ≈ 364.

2.1 Preconditioning

The periodic boundary conditions on the lattice allow for a somewhat larger symmetry than
just the periodic local gauge rotations. This is well-known from theSU(2) lattice center symmtry:
In this case, one multiplies all linksU0(t,x) pointing out of a fixed time-slice3 t = const by(−1).
This construction flips the sign of all Polyakov lines, but it leaves all plaquettes (and thus the action)
invariant; it is therefore a genuine symmetry of the system. In Landau gauge, one can generalise
this construction to all four directions, giving a total of 24 possible combinations offlips [7].

1For simplicity, we work exclusively with the colour groupG = SU(2).
2Gauge potentials are extracted from the link variables in the usual fashion via anO(a2) improvement of the basic

formulaAµ = 1
2a

[

Uµ (x)−U†
µ (x)

]

.
3The actual location of the time slicet is irrelevant, since a center flip at a different time-slicet ′ can be decomposed

into a flip att followed by a strictly local, periodic gauge transformation.
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Figure 1: The equal-time gluon propagator at the smallest non-zero lattice momentum, measured as a
function of the numberN of Gribov repetitions. Data was collected on a 244 lattice withβ = 2.15 (left) and
β = 2.20 (right); a total of 200 thermalised configuration were analysed for each data point.

In the Coulomb case, the gauge fixing is carried out in a fixed 3D time-slice, i.e. the flips are
only carried out in spatial directions, and only the 2D sub-planes perpendicular to a given direction
(at fixedt) are flipped. Thepreconditioningconsist in trying all 23 twists to maximiseFt [U ] prior to
the acutal relaxation step. This can be viewed as a non-local update representing a large symmetry
transformation that no local relaxation algorithm is likely to find. Flips can also be interspersed at
any time during relaxation, although they are most efficient early on, when the algorithm has not
yet converged onto a target maximum.4

2.2 Multiple Gribov repetitions

The gf. sequence consisting of preconditioning, relaxation and overrelaxation can be repeated
multiple times with random starting points. This inspects different regions of the search space and
converges to distinct Gribov copies. What makes this repetition effective isthat a relatively small
numberN of copies gives a large increase in the gf. functional, while subsequentrepetitions beyond
a certainplateaupoint do not give any substantial improvement within reasonable computation
time.

This can be seen in figure 1, which plots the equal-time Gluon propagatorD(p) at the smallest
non-zero lattice momentum, as a function of the numberN of Gribov repetitions. The net effect of
the improved gauge fixing is generally to suppressD(pmin). Even forN as small asN = 2, . . . ,5,
the corrections are in the range of 10%. Further copies give smaller corrections; it is then a matter
of experiment to find the optimal tradeoff between CPU time and gf. quality,. TheoptimalN will
depend quite sensitively on the lattice size and other simulation parameters. In fig. 1 one can see
the plateau setting in rather quickly, while our largest lattices (V = 364) required up toN = 30
repetitions.

4The (over)relaxation algorithm is iterated until the local gf. violation, i.e. the(maximal norm at all sitesx of the)
local gradient of (2.1) is smaller than 10−13.
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3. Results

3.1 D = 2+1

In this case, our findings in fig. 2 are in fair agreement to previous lattice calculations [4, 5].
Our improved gauge fixing scheme has again the tendency to suppress the gluon propagator in the
infra-red, but sinceD(|p|) → 0 at small|p| even without gf. improvment, thequalitativebehaviour
of the gluon propagator is unchanged.

In the UV, we observe scaling in the sense that the various propagator curves for different
values of the couplingβ can be multiplied by a momentum-independent factorZ(β ) such that all
curves coalesce to a single line. There is a tendency for the scaling to be less perfect than without
the gf. improvement, but this is well below the error bars of our numerical simulation.

Quantitatively, the suppression of the gluon propagator in the infra-red isas large as 10% –
15%. To fit the curve in the deep IR and UV region, we have placed two cutson the data. In the
IR, a power ansatz yields

D(|p|) = |p|α · (c1 +c2|p|2 + · · ·) , α ≈ 0.85(10). (3.1)

Since the curve flattens towards the maximum, the exponentα is somewhat depending on the exact
location of the IR cut. AtΛ = 0.5GeV, we haveα = 0.81, while it increases to the above value
α = 0.85 for Λ = 0.4GeV. With our present lattice sizes, we cannot go much lower with the IR
cut, but the present trend does certainly not rule out the valueα = 1 preferred by Hamiltonian
approaches [1].

In the ultra-violet, a power-law decay

D(|p|) ∼ |p|−γ
, γ ≈ 1.5(1) (3.2)

is possible, but the exact value of the exponentγ depends quite sensitively on the location of the
UV cut. A double-logarithmic plot in the deep UV isnot a straight line at large momenta, which
points to sizeable logarithmic corrections. In fact, an ad-hoc ansatz

D(p) ∼
1

|p| · ln |p|δ

with δ ≈ 0.51 can fit the data equally well. The conclusion is that our present data does not contain
large enough momenta to distinguish between a logarithmic or a power-like behaviour in the UV.

3.2 D = 3+1

The left panel of fig. 3 shows the results for the largest lattice that we considered. The improved
gf. scheme is now seen to make aqualitativedifference, both in the IR and the UV.

At low momenta, the propagator is clearlysuppressedas compared to less intricate gf. proce-
dures. The power-law fit explained in the last subsection reveals a IR exponent of

α ≈ 0.24(12) ,

again with significant variations as the IR cut on the data is changed. However, a valueα = 0, i.e. a
gluon propagator going to a constant asp → 0 [4, 5] seems much more unlikely than the vanishing
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Figure 2: The renormalised equal-time gluon propagator for various couplings and lattice sizes. For the
significance of the two data cuts, see the main text.

D(0) = 0 predicted by variational calculation [1]. On the other hand, the comparision with the
D = 2+1 case indicates that much smaller momenta must be sampled to rule out one or the other
option.

In the UV, the most striking difference to previous lattice results is the absence of perfect
scaling, i.e. the gluon propagator does not seem to be multiplicatively renormalisable. This can be
clearly seen in the logarithmic plot in the right panel of fig. 3. In a multiplicativelyrenormalisable
situation, we would expect the curves for all couplingsβ to have the sameslopeat large momenta
– which is clearly not the case.

One can now proceed and renormalise anyway such that a common curve can be observed in
one p-region or the other (the right panel of fig. 3 has been renormalised to fitwell in the IR). In
particular, one could try to fit the deep UV region, at the expense of sacrificing a common curve in
the IR. From such a fit, it is even possible to extract a power-like behaviour

D(p) ∼ |p|−α
, α = 1.57.

which is in fair agreement with ref. [4]. Our present data, however, does not warrant such a pro-
cedure. In particular, an ad-hoc logarithmic ansatz as in the last subsection would work equally
well. To summarize, the scaling violations displayed by our improved gf. schemeare so severe
that any attempt to extract a consistent UV behaviour from a multiplicative renormalisation seems
ill-adviced.

Comparable problems with renormalisation were also found in other studies employing im-
proved gf. schemes. Continuum perturbation theory [9] attributes the scaling violations to the
instantaneous nature of the propagator considered here.

4. Summary and conclusions

In this talk, I have presented first results for the equal-time gluon propagator measured in an

6
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Figure 3: Left panel: The equal-time gluon propagator for various values of the coupling constant. The
gauge fixing includes preconditioning and a minimum of 30 Gribov repetitions for each measurement; mul-
tiplicative renormalisation focused on the IR data. Right panel: The same data in a logarithmic plot.

improved Coulomb gauge fixing scheme. The general observation is a significantsuppressionof
the propagator in the infrared, and aloss of scalingat very large momenta. Although the numerics
is not fully compelling, the IR data points toD(0) = 0 as a likely scenario even forD = 3+1. The
failure of multiplicative renormalisation in the UV has also been observed in other studies treating
Coulomb gauge with improved gf. techniques; in perturbation theory, this failure can presumable
be attributed to a loss of covariance for the equal-time propagator.

To make the present numbers more convincing, we have to go to smaller momenta,which may
involve a simulated annealing step in the gf. pipeline. To get a handle on the scaling issue, it would
also be interesting to study the gluon propagator at non-equal times, using acomplete gauge fixing
that also destroys the residual symmetry in Coulomb gauge. Further investigations involve the
ghost propagator and the Coulomb form factor, which are of immediate relevance for the physics
of the gauge system. These studies are currently underway and will be presented elsewhere.
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