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The use of adjoint (quasi) zero-modes of the Dirac operatprdbe the Yangs-Mills vacuum has
been recently advocated by Gonzalez-Arroyo and Kirchnée donstruction relies on the use
of the super-symmetric zero mode which, for classical coméigons, provides a direct estimate
of the gauge action density. In the lattice implementatibthis idea, we show how the results
improve considerably if the overlap operator is used irtstafathe Wilson-Dirac one. Before
proceeding to the detailed study of Monte Carlo ensemblestudied here a series of potentially
complicated situations which can be encountered. In paaticwe study the case of instanton
anti-instanton pairs and analyse how the results depend s@paration. The effect of lattice
artifacts is also of concern. Indeed, a statistical analgfizero modes of thermalised SU(2)
configurations a3 = 2.57 shows a significant fraction havindN4- 2 adjoint zero modes, in
contradiction with the index theorem. This violation mustdssociated to the roughness of the
lattice configurations. Indeed, we show that this situatiocurs for instantons of size of the order
of the lattice spacing.
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1. Introduction.

In the past years a considerable effort has been devoted sm#ilysis of the topological struc-
ture of pure Yangs-Mills theory on the lattice. These stsdiacompass from global quantities,
like the topological susceptibility, to local ones, in ateatpt to link topology to models of chiral
symmetry breaking and confinement. For that one has to déakkeé roughness of lattice Monte-
Carlo configurations, which are generally plagued withawitlet fluctuations. Several cooling and
smearing algorithms have been proposed in order to obtaimoather image of these configura-
tions. Although these methods are useful in order to comgloteal quantities, they are criticized
as a tool to analyse local properties. An alternative, adairo distort less the original ensembile,
is to use filtering methods based on the Dirac operator [1f mMhin idea is the relation between
fermions and topology given by the Atiyah-Singer index tte@o and the correlation between the
gauge action density and the local density of the eigerssiaitehe Dirac operator. As will be
described below, this relation is particularly neat fonierns in the adjoint representation.

In what follows we will first present a discussion of the adeges of using filtering methods
based on the adjoint Dirac operator, as advocated in [2hdhgaper it was argued that in order to
apply the method to Monte Carlo generated configurationb®fattice the use of the overlap Dirac
operator was desirable. Here we have carried out this prograd applied it to a set of potentially
delicate situations. The first one is that of instanton ardianton (1A) pairs. The construction in
[2] is exact for classical solutions of the equations of mtand relies on the existence of quasi
zero modes of the Dirac operator. 1A pairs are not of this, saith quasi zero modes disappearing
as the separation in the pair decreases. Still our resuts Bbw, even in the case of rather small
separation, the topological charge density can be recatstt in terms of the density of the, so
called, super-symmetric modes. The second potentiallicatel case is related to dislocations,
lattice artefacts associated to small instantons. Sonmdipo Edwards, Heller and Narayanan [3]
reported on the presence of configurations with442 adjoint-zero modes in lattice thermalized
ensembles. This is in contrast with the continuum expexstaif 4N. We have also encountered a
significant fraction of these cases in our ongoing MonteeCsimulations. We will argue that they
are necessarily related to the roughness of the latticequoations and show it explicitly on a set
of instantons with size of the order of the lattice spacing.

2. Reconstructing the action density from adjoint zero-moes.

We will describe here the basic ideas underlying the prdpasRef. [2] and what are the
advantages over other filtering methods.

The construction is based on the super-symmetric zero miodedassical solutions of the
Euclidean equations of motion, which read [4]:

1
L)Ua: é F[,?v [VuaVv]V7 (21)

with F,, the gauge field strength aktany constant four-spinor. From this expression two pasitiv
and two negative chirality zero modes are obtained (noteditii@int zero modes always come in
pairs related by charge conjugati@hthrough . = wCy*). The densities of these zero modes
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give respectively the self-dual and anti-self-dual paftthe action density. Taking, for instance,
V+ =(1,0,0,0), the corresponding positive chirality zero mode in Eq. YBdcomes

E3(x) +B3(X)
EF(x) + BI() —1(E3(x) + B5(x))
0 ,
0

$3(x) 0 (2.2)

selecting only the self-dual part of the action density. réhie one peculiarity ofy that allows to
single it out from the subspace of zero modes: the imaginaryqs the first component is zero in
every pointx and for all components in colour space.

Given the fact that, for classical solutions, the superssgtnic zero modes trace the action
density, the proposal in Ref. [2] is to make an analogoustoact®on on generic configurations.
The strategy is to look for the low lying modes of the Dirac iger and single out the super-
symmetric modes by imposing reality conditions as the orseriteed above. For example, within
the space of positive chirality low modes we select the coatimn that minimizes the quantity
S xallm @i?(x)]2. Charge and action densities are reconstructed respigativeof the sum and
difference of| 2 (x)|? and|?2 (x)|?. This method is computationally cheaper than those based on
the use of the fundamental representation, since it regjairmuch smaller number of modes to
reconstruct the (anti) self-dual structures.

The authors in Ref. [2] have tested the method using the WilBioac operator. The test works
well on smooth configurations. Once moderate quantum fltiohg are included the method
succeeds in filtering the UV noise. Nevertheless, the WiBoac operator is not optimal for
this program since, in many cases, it does not show a cleanghp spectrum. A better option is
to use the Neuberger-Dirac operator [5]:

1
D = —
ov 2

whereHwp = y5(Dw — mwp) andDy is the Wilson-Dirac operator in the adjoint representation
One advantage of using a chiral operator is that we can cavgadh chirality independently by
diagonalising the operators:

(14 yse(Hwp)) , (2.3)

— 1
DD = Py (¥6Dov) Py = 5P (14 €) P (2.4)

and B 1
DD = P (Doy)?P- = 5P~ (1 - )P, (2.5)

with P = 3 (14 ).
As mentioned in the introduction we will test the method ontipalarly complicated situa-
tions, including non-self dual configurations and smaltangons.

3. Testing the method on instanton-anti-instanton pairs.

Instanton - anti-instanton (IA) pairs are non-self-duahftgurations with zero topological
charge. Although such configurations do not have exact zerdes) we expect to find quasi
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Figure 1: Spectrum of lower modes of an IA pair. Each point represewsaositive and two negative chi-

rality modes. For large separation the super-symmetricanage the lowest (pink) modes in the spectrum.
This ceases to be the case after the level crossidg-a2.5p (pg = 3ais the original instanton size).
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Figure 2: Top: Positive and negative chirality lowest modes for a welbarated instanton-anti-instanton
pair. Bottom: Reconstruction of the charge density out efltwest modes compared with the original one.
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zero-modes for well separated pairs. In particular, we expepositive and 4 negative chirality
zero-modes associated to the isolated instanton andretdinton. Indeed, our results for large
separation, presented in Fig. 1, show a clear gap betwedoviieet eigenvalues and the rest of the
spectrum. The degeneracy of these lowest modes is, howmtazprrect. We find only two posi-
tive and two negative chirality solutions correspondindagage separation, to the super-symmetric
zero-modes. Figure 2 shows the densities of these modepit®twe discrepancy in the degener-
acy of modes, the self-dual and anti-self dual parts of thiemdensity can be extracted with good
accuracy and the reconstruction of the original chargeityjetusns out to be very good.

The situation becomes less clear as the instanton andhatdirton begin to overlap strongly (a



Adjoint zero-modes as a tool to understand the Yang-Miltaiuan Alfonso Sastre

0.1 50
0.0
%g %@@ m ﬁs m
O.OOl«> 0@
o D

y o’ . ‘
e 04 | o o B = @
= 5
21e-05 =
g
ole-06
2
Yo7 @ : °

A4 & :}' © TR
1e-08f ¥,
k2
le-09 -
*
1le-10 w w s s ‘ 0
10 20 30 40 50 - R -
Monte Carlo configuration 12 8 4 zero nc1)odes 4 8 12

Figure 3: Spectra oDy (myp=1.4) for the Monte  Figure 4: Histogram of the number of configura-
Carlo configurations. Points below the straight linetions with a given number of zero modes. Negative
are compatible with zero. number corresponds to negative chirality.

sequence of configurations at different separations carbergted by improved cooling [6]). In
Fig. 1, we can see how the lowest eigenvalues grow as theagepadecreases. There is a critical
distance d = 2.5p0) where the gap in the spectrum closes. In addition to thisetis level crossing
and the super-symmetric modes cease to be the lowest onas gpéctrum. Nevertheless, even
in such case, the super-symmetric modes reconstruct thgecansity profile in good agreement
with the original one.

4. Testing the method on rough configurations.

As an ongoing part of the project, we have started analyzimgigurations extracted from a
SU(2) thermalized ensemble. They have been generated hdthivilson plaquette action, on a
12* lattice for B = 2.57 (a = 0.08 fm). For fifty Monte-Carlo configurations we have extracte
the twelve lowest eigenvalues and eigenvectors. The edigew are collected in Fig. 3, showing a
clear gap between zero and non-zero modes. A histogram ofitheer of zero modes is presented
in Fig. 4. Surprisingly a significant fraction of the configtions shows only two zero modes, while
the continuum index theorem predictd 4N € ZZ. As mentioned before, this mismatch was previ-
ously reported by Edwards, Heller and Narayanan [3], wherpreted it as evidence for fractional
topological charge (not expected on the continuum for théogdie boundary conditions used).
Contrary to their belief, we will argue that this effect is artiefact associated to the roughness of
the lattice configurations. We will show that in some casearitbe related to the presence of small
instantons with sizes of the order of the lattice spacing.

To analyse the behaviour of small instantons we start witimaash SU(2) configuration
with Q = 1. After applying to it several cooling sweeps with= 1 we obtain a sequence of
configurations for different instanton sizes. On them, wapote the eight first adjoint eigenvalues
usingmyp = 1.4 in the overlap operator, see Eq. (2.3). The Atiyah-Singdex theorem predicts
in this case four zero-modes, in two independents fgditg).). Figure 5 shows the spectrum as a
function of the instanton size. Indeed, the initial confagion has 4 zero-modes. However, there is
a critical size p. = 2.05a) below which only two zero modes remain. Fig. 6 shows the dégece
of p. on the mass of the overlap operator. It is rather mildrifgyp > 1.4. We can use this fact
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Figure 5: Spectrum oDy (myp=1.4) versus the Figure 6: Dependence op; on the mass of the
instanton size in lattice units. Points below the lineoverlap operator.p. is the critical size (in lattice
are doubly degenerate and compatible with zero. units) below which the spectrum has 2 zero modes.

to select an optimal value @y p for the analysis of the MC simulations. The two spurious zero
modes dissappear fgr < 1.65a, quite independently of the value ofyp. Usingmyp > 1.4, for
which pc ~ 1.9a, minimises, hence, the window for spurious eigenvalues.

The spurious zero modes are clearly associated with thénnasg of the configuration. This
can be quantified through the admissibility condition theddd be imposed in order to guarantee
locality of the overlap operator [7]. This condition, weitt in terms of the plaquetté(p), reads

11-U(p)l| < &(Mwp). (4.1)

Figure 7 shows the number of plaguettes that violate Eq. a& B function of instanton size for
the configurations presented in Fig. 6. There is a clear lagtlwben configurations with spurious
zero modes and those that violate the admissibility camdlitiio stress it further we have analysed
the location of ‘wrong plaquettes’. Fig. 8 shows that theylacalized around the maximum of the
action density where the configuration becomes roughemiatisnstantons.

Note that this mismaitch is irrelevant if the set of rough apunations has zero measure in
the continuum limit. OuiB = 2.57 set has been generated with the SU(2) Wilson action. thdee
for this action, general arguments, due to Pugh and Tepginditate a divergent contribution of
small instantons in the continuum limit. The problem canvmmded by using an improved action
for the Monte-Carlo generation and by tuning the mass in theglap operator. Similar artefacts
in the spectrum of the overlap Dirac operator in the fundaaieapresentation have been reported
in [9, 10]. All this is an indication that the use of improvectians might be essential even for the
computation of global quantities as the topological suslipy.

5. Conclusions.

We have argued that the adjoint zero-modes of the Dirac tpgoeovide an efficient way to
extract the topological content of the Yang-Mills vacuunheTmethod requires the evaluation of
a small numer of eigenvectors, reducing the computatioostl wtih respect to approaches based
on the fundamental representation. It makes use of the girep®f a special set of zero modes
which, for classical configurations, are directly linkedhe gauge action density. We have probed
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Figure 7: Number of plaguettes that violate the ad- Figure 8: Number of plaguettes that violate the ad-
missibility condition Eqg. (4.1) in terms of the in- missibility condition vs distance from the maximum
stanton sizeg(1) = 1/30. of the action density, for several instanton sizes.

the goodness of the method in reproducing the charge dewfsityon-self-dual, instanton anti-
instanton pairs. We have also analysed the case of rouglgoaations as small instantons. We
have pointed out that a mismatch between the observed nushbero modes and the continuum
prediction generically arises for instantons below acailtsize of the order of the lattice spacing.
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