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The use of adjoint (quasi) zero-modes of the Dirac operator to probe the Yangs-Mills vacuum has

been recently advocated by González-Arroyo and Kirchner. The construction relies on the use

of the super-symmetric zero mode which, for classical configurations, provides a direct estimate

of the gauge action density. In the lattice implementation of this idea, we show how the results

improve considerably if the overlap operator is used instead of the Wilson-Dirac one. Before

proceeding to the detailed study of Monte Carlo ensembles, we studied here a series of potentially

complicated situations which can be encountered. In particular, we study the case of instanton

anti-instanton pairs and analyse how the results depend upon separation. The effect of lattice

artifacts is also of concern. Indeed, a statistical analysis of zero modes of thermalised SU(2)

configurations atβ = 2.57 shows a significant fraction having 4N + 2 adjoint zero modes, in

contradiction with the index theorem. This violation must be associated to the roughness of the

lattice configurations. Indeed, we show that this situationoccurs for instantons of size of the order

of the lattice spacing.
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1. Introduction.

In the past years a considerable effort has been devoted to the analysis of the topological struc-
ture of pure Yangs-Mills theory on the lattice. These studies encompass from global quantities,
like the topological susceptibility, to local ones, in an attempt to link topology to models of chiral
symmetry breaking and confinement. For that one has to deal with the roughness of lattice Monte-
Carlo configurations, which are generally plagued with ultraviolet fluctuations. Several cooling and
smearing algorithms have been proposed in order to obtain a smoother image of these configura-
tions. Although these methods are useful in order to computeglobal quantities, they are criticized
as a tool to analyse local properties. An alternative, claimed to distort less the original ensemble,
is to use filtering methods based on the Dirac operator [1]. The main idea is the relation between
fermions and topology given by the Atiyah-Singer index theorem and the correlation between the
gauge action density and the local density of the eigenstates of the Dirac operator. As will be
described below, this relation is particularly neat for fermions in the adjoint representation.

In what follows we will first present a discussion of the advantages of using filtering methods
based on the adjoint Dirac operator, as advocated in [2]. In that paper it was argued that in order to
apply the method to Monte Carlo generated configurations on the lattice the use of the overlap Dirac
operator was desirable. Here we have carried out this program and applied it to a set of potentially
delicate situations. The first one is that of instanton anti-instanton (IA) pairs. The construction in
[2] is exact for classical solutions of the equations of motion and relies on the existence of quasi
zero modes of the Dirac operator. IA pairs are not of this sort, with quasi zero modes disappearing
as the separation in the pair decreases. Still our results show how, even in the case of rather small
separation, the topological charge density can be reconstructed in terms of the density of the, so
called, super-symmetric modes. The second potentially delicate case is related to dislocations,
lattice artefacts associated to small instantons. Some time ago Edwards, Heller and Narayanan [3]
reported on the presence of configurations with 4N + 2 adjoint-zero modes in lattice thermalized
ensembles. This is in contrast with the continuum expectation of 4N. We have also encountered a
significant fraction of these cases in our ongoing Monte-Carlo simulations. We will argue that they
are necessarily related to the roughness of the lattice configurations and show it explicitly on a set
of instantons with size of the order of the lattice spacing.

2. Reconstructing the action density from adjoint zero-modes.

We will describe here the basic ideas underlying the proposal in Ref. [2] and what are the
advantages over other filtering methods.

The construction is based on the super-symmetric zero modesfor classical solutions of the
Euclidean equations of motion, which read [4]:

ψa =
1
8

Fa
µν [γµ ,γν ]V , (2.1)

with Fµν the gauge field strength andV any constant four-spinor. From this expression two positive
and two negative chirality zero modes are obtained (note that adjoint zero modes always come in
pairs related by charge conjugationC throughψc = γ5Cψ∗). The densities of these zero modes
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give respectively the self-dual and anti-self-dual parts of the action density. Taking, for instance,
V+ = (1,0,0,0), the corresponding positive chirality zero mode in Eq. (2.1) becomes

ψa
+(x) ∝











Ea
3(x)+Ba

3(x)
Ea

1(x)+Ba
1(x)− i(Ea

2(x)+Ba
2(x))

0
0











, (2.2)

selecting only the self-dual part of the action density. There is one peculiarity ofψa
+ that allows to

single it out from the subspace of zero modes: the imaginary part of the first component is zero in
every pointx and for all components in colour space.

Given the fact that, for classical solutions, the super-symmetric zero modes trace the action
density, the proposal in Ref. [2] is to make an analogous construction on generic configurations.
The strategy is to look for the low lying modes of the Dirac operator and single out the super-
symmetric modes by imposing reality conditions as the one described above. For example, within
the space of positive chirality low modes we select the combination that minimizes the quantity

∑x,a[Im ψ1,a
+ (x)]2. Charge and action densities are reconstructed respectively out of the sum and

difference of|ψa
+(x)|2 and|ψa

−(x)|2. This method is computationally cheaper than those based on
the use of the fundamental representation, since it requires a much smaller number of modes to
reconstruct the (anti) self-dual structures.

The authors in Ref. [2] have tested the method using the Wilson-Dirac operator. The test works
well on smooth configurations. Once moderate quantum fluctuations are included the method
succeeds in filtering the UV noise. Nevertheless, the Wilson-Dirac operator is not optimal for
this program since, in many cases, it does not show a clear gapin the spectrum. A better option is
to use the Neuberger-Dirac operator [5]:

Dov =
1
2

(1+ γ5ε(HWD)) , (2.3)

whereHWD = γ5(DW −mWD) andDW is the Wilson-Dirac operator in the adjoint representation.
One advantage of using a chiral operator is that we can compute each chirality independently by
diagonalising the operators:

DD̄ = P+(γ5Dov)
2P+ =

1
2

P+ (1+ ε)P+ (2.4)

and
D̄D = P−(γ5Dov)

2P− =
1
2

P− (1− ε)P− , (2.5)

with P± = 1
2 (1± γ5).

As mentioned in the introduction we will test the method on particularly complicated situa-
tions, including non-self dual configurations and small instantons.

3. Testing the method on instanton-anti-instanton pairs.

Instanton - anti-instanton (IA) pairs are non-self-dual configurations with zero topological
charge. Although such configurations do not have exact zero modes, we expect to find quasi
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Figure 1: Spectrum of lower modes of an IA pair. Each point represents two positive and two negative chi-
rality modes. For large separation the super-symmetric modes are the lowest (pink) modes in the spectrum.
This ceases to be the case after the level crossing atd ∼ 2.5ρ0 (ρ0 = 3a is the original instanton size).

Positive chiralityNegative chirality

Charge density|Psi+|2 - |Psi-|2

Figure 2: Top: Positive and negative chirality lowest modes for a wellseparated instanton-anti-instanton
pair. Bottom: Reconstruction of the charge density out of the lowest modes compared with the original one.

zero-modes for well separated pairs. In particular, we expect 4 positive and 4 negative chirality
zero-modes associated to the isolated instanton and anti-instanton. Indeed, our results for large
separation, presented in Fig. 1, show a clear gap between thelowest eigenvalues and the rest of the
spectrum. The degeneracy of these lowest modes is, however,not correct. We find only two posi-
tive and two negative chirality solutions corresponding, at large separation, to the super-symmetric
zero-modes. Figure 2 shows the densities of these modes. Despite the discrepancy in the degener-
acy of modes, the self-dual and anti-self dual parts of the action density can be extracted with good
accuracy and the reconstruction of the original charge density turns out to be very good.

The situation becomes less clear as the instanton and anti-instanton begin to overlap strongly (a
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Figure 3: Spectra ofDov(mWD=1.4) for the Monte
Carlo configurations. Points below the straight line
are compatible with zero.
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Figure 4: Histogram of the number of configura-
tions with a given number of zero modes. Negative
number corresponds to negative chirality.

sequence of configurations at different separations can be generated by improved cooling [6]). In
Fig. 1, we can see how the lowest eigenvalues grow as the separation decreases. There is a critical
distance (d = 2.5ρ0) where the gap in the spectrum closes. In addition to this, there is level crossing
and the super-symmetric modes cease to be the lowest ones in the spectrum. Nevertheless, even
in such case, the super-symmetric modes reconstruct the charge density profile in good agreement
with the original one.

4. Testing the method on rough configurations.

As an ongoing part of the project, we have started analyzing configurations extracted from a
SU(2) thermalized ensemble. They have been generated with the Wilson plaquette action, on a
124 lattice for β = 2.57 (a = 0.08 fm). For fifty Monte-Carlo configurations we have extracted
the twelve lowest eigenvalues and eigenvectors. The eigenvalues are collected in Fig. 3, showing a
clear gap between zero and non-zero modes. A histogram of thenumber of zero modes is presented
in Fig. 4. Surprisingly a significant fraction of the configurations shows only two zero modes, while
the continuum index theorem predicts 4N, N ∈ ZZ. As mentioned before, this mismatch was previ-
ously reported by Edwards, Heller and Narayanan [3], who interpreted it as evidence for fractional
topological charge (not expected on the continuum for the periodic boundary conditions used).
Contrary to their belief, we will argue that this effect is anartefact associated to the roughness of
the lattice configurations. We will show that in some cases itcan be related to the presence of small
instantons with sizes of the order of the lattice spacing.

To analyse the behaviour of small instantons we start with a smooth SU(2) configuration
with Q = 1. After applying to it several cooling sweeps withε = 1 we obtain a sequence of
configurations for different instanton sizes. On them, we compute the eight first adjoint eigenvalues
usingmWD = 1.4 in the overlap operator, see Eq. (2.3). The Atiyah-Singer Index theorem predicts
in this case four zero-modes, in two independents pairs(ψ ,ψc). Figure 5 shows the spectrum as a
function of the instanton size. Indeed, the initial configuration has 4 zero-modes. However, there is
a critical size (ρc = 2.05a) below which only two zero modes remain. Fig. 6 shows the dependence
of ρc on the mass of the overlap operator. It is rather mild formWD > 1.4. We can use this fact
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Figure 5: Spectrum ofDov(mWD=1.4) versus the
instanton size in lattice units. Points below the line
are doubly degenerate and compatible with zero.
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Figure 6: Dependence ofρc on the mass of the
overlap operator.ρc is the critical size (in lattice
units) below which the spectrum has 2 zero modes.

to select an optimal value ofmWD for the analysis of the MC simulations. The two spurious zero
modes dissappear forρ < 1.65a, quite independently of the value ofmWD. UsingmWD > 1.4, for
which ρc ∼ 1.9a, minimises, hence, the window for spurious eigenvalues.

The spurious zero modes are clearly associated with the roughness of the configuration. This
can be quantified through the admissibility condition that should be imposed in order to guarantee
locality of the overlap operator [7]. This condition, written in terms of the plaquetteU(p), reads

‖1−U(p)‖ ≤ ε(mWD) . (4.1)

Figure 7 shows the number of plaquettes that violate Eq. 4.1,as a function of instanton size for
the configurations presented in Fig. 6. There is a clear link between configurations with spurious
zero modes and those that violate the admissibility condition. To stress it further we have analysed
the location of ‘wrong plaquettes’. Fig. 8 shows that they are localized around the maximum of the
action density where the configuration becomes rougher for small instantons.

Note that this mismatch is irrelevant if the set of rough configurations has zero measure in
the continuum limit. Ourβ = 2.57 set has been generated with the SU(2) Wilson action. Indeed
for this action, general arguments, due to Pugh and Teper [8], indicate a divergent contribution of
small instantons in the continuum limit. The problem can be avoided by using an improved action
for the Monte-Carlo generation and by tuning the mass in the overlap operator. Similar artefacts
in the spectrum of the overlap Dirac operator in the fundamental representation have been reported
in [9, 10]. All this is an indication that the use of improved actions might be essential even for the
computation of global quantities as the topological susceptibility.

5. Conclusions.

We have argued that the adjoint zero-modes of the Dirac operator provide an efficient way to
extract the topological content of the Yang-Mills vacuum. The method requires the evaluation of
a small numer of eigenvectors, reducing the computational cost wtih respect to approaches based
on the fundamental representation. It makes use of the properties of a special set of zero modes
which, for classical configurations, are directly linked tothe gauge action density. We have probed
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Figure 7: Number of plaquettes that violate the ad-
missibility condition Eq. (4.1) in terms of the in-
stanton size.ε(1) = 1/30.
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Figure 8: Number of plaquettes that violate the ad-
missibility condition vs distance from the maximum
of the action density, for several instanton sizes.

the goodness of the method in reproducing the charge densityof, non-self-dual, instanton anti-
instanton pairs. We have also analysed the case of rough configurations as small instantons. We
have pointed out that a mismatch between the observed numberof zero modes and the continuum
prediction generically arises for instantons below a critical size of the order of the lattice spacing.
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