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Dual superconductivity is believed to be a promising mechanism for quark confinement and has been
investigated on a lattice effectively by a particular gauge called the maximal Abelian (MA) gauge.
We propose a new formulation of SU(3) Yang-Mills theory on a lattice based on a non-linear change
of variables where the new field variables are expected to reduce to those of the Cho-Faddeev-Niemi-
Shabanov decomposition in the continuum limit. By introducing a new variable, say color field,
carrying the color direction with it, this formulation enables us to restore and maintain color symme-
try that was lost in the conventional MA gauge due to the naive separation of the gauge potential into
diagonal and off-diagonal components. An advantage of this formulation is that we can define gauge-
invariant magnetic monopoles without relying on specific gauges to investigate quark confinement
from the viewpoint of dual superconductivity. In this talk, we will present the relevant lattice formu-
lation to realize the above advantages and preliminary results of numerical simulations to demonstrate
the validity of this formulation. This SU(3) formulation is an extension of the SU(2) version already
proposed by us in the previous conference.
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1. Introduction

Quark confinement is still an unsolved and challenging problem in theoretical particle physics.
Dual-superconductivity is believed to be a promising mechanism for quark confinement in quantum
chromodynamics (QCDN] Indeed, the relevant data supporting the validity of this picture have been
accumulated by numerical simulations especially since 1990 and some of the theoretical pre2ji3ions[
have been confirmed in the Maximal Abelian (MA) gauge; infrared Abelian dominance, magnetic
monopole dominance and non-vanishing off-diagonal gluon mass, which are the most characteristic
features for dual superconductivity. However, they are not yet confirmed in any other gauge than the
MA gauge and the MA gauge breaks color symmetry.

In this talk, we propose a new compact lattice formulation for the SU(3) Yang-Mills (YM) theory
to establish the dual superconductivity picture for quark confinement in a gauge invariant way. This
could be a lattice version of the non-linear change of variables (NLCV) for the YM gauge field in
the continuum formulation (originally known as the Cho-Faddeev-Niemi-Shavanov (CFNS) decom-
position). The YM gauge field, is decomposed into two partd,, =V, + X, in such a way that
the “Abelian (diagonal)" par¥/,, is dominantly responsible for the area decay law of the Wilson loop
average, while the remaining "off-diagonal” pX, decouples in the low-energy (or long-distance)
region, thereby, leading to the infrared Abelian dominance. For performing non-perturbative studies,
therefore, it is important to give a procedure of extracting such an “Abelian'paaind the remaining
partX, from the original YM gauge field\, also on a lattice. We construct the SU(3) lattice formu-
lation by extending the SU(2) version proposed in our previous WA, 6, 7] (For details, seeq)).

In the SU(2) case, we have succeeded to define two compact lattice vakigplasdX, ;,which play

the similar role to the "Abelian™ and "off-diagonal” parts in the continuum theory. These new variables
enable us to define a gauge invariant magnetic monopole in the compact formulation which guarantees
that the magnetic charge is integer-valued and obeys the Dirac quantization condition. Moreover, the
infrared “Abelian” dominance and magnetic monopole dominance in the string tension were demon-
strated by numerical simulations, together with the non-vanishing mass for the "off-diagonal” part. It
is crucial to introduce a color vector fieftx) for maintain the color symmetry of the original YM
theory.

2. A new compact reformulation of SU(3) YM

We construct arsU(3) lattice formulation by extending th8U(2) case 6, [7]. Two color vector
fields, ny andmy, are introduced. They play a crucial role of maintaining the color symmetry of the
original YM theory. A link variabldJy ;, represents exponential of the line integral of a gauge potential
Ay along a link fromx to x+ £[i:

x+eu
Uy = 9exp<—ig/ dx“A“(x)> = exp(—igehy ), (2.1)
X

wheree denotes a lattice spacing agd the path ordering operator. In explicitly estimating the naive
continuum limit we adopt the midpoink'(= x+ €[1/2) definition for the link variable. Then we
obtain an extended theory, M-YMU( ,,, nx ,my), which has an enlarged gauge symmelky(3), x
[SU(3)/U(1)%] (See Figurel). Under the gauge transformati@®y = exp(i6y), Qx = expliay) €
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SU(3), the color fieldsy, my andU, , transform as
ny — Zny = N0},  my — ®m, = O,M,@a!, (2.2)
Uy — Uy = QU QL (2.3)
New compact lattice variableg ; andX ;, which correspond to the decomposed variables in contin-

uum theoryV, andX, should be represented hy, my andU, , in a similar way to theSU(2) case.
The lattice version of the decomposition condition is given by

D[El [Vx7u]nx - O, Df‘l [Vx’u]mx — 07 (24)

Tr(nxxx7u> = O, Tr(mxxxu) = 07 (25)
whereD7, [V | ¢ is a lattice version of the covariant derivative defined by

1

Di [VX#](B( = c (Vx,u et — @(Vx,u) . (2.6)
Under the gauge transformation

Vx,u — Vxu = @xvx#@;rw (2-7)

XX,[J — OXX,H == Oxxx7ue;‘<., (28)

the decomposition condition satisfies desired gauge transformabgig, ,|¢x — Dy, [OVy u]® =

O [DE [Vl @ OF 1 Tr(meXoy) = Tr(On,@Xy ) and Tr(miXy ) = Tr(®m,@X,,). To define the
equivalent theory in terms of the new variables to the original YM, the extended symmetry should be
restricted to the same symmetry as the original Y8W[3),-g. For this purpose, we use a new MAG
(nMAG) condition which is obtained by minimizing the functional;

X

=3 Tr(®U O u Uy 1Ony) + > Tr(®Unu®mye U, 1°my) +c.c.
< b

Since 2.4) and 2.5) are coupled matrix equations, it is difficult to obtain the general solution.
Therefore, we consider a formula which reproduce the NLCV in the continuum theory. We adopt the
midpoint definition forVy ;, and the site definition foXy ;-

X+
Vi = exp(—igeVy ) = @exp(—ig/ dx“Vu(x)> , (2.10)
X

whereVy ;, could be the link variable represented by exponential of the line integkgj, dike Uy ;. In
the naive continuum limiD§, [Vy ;] ¢ agrees with the continuum version up@oe?) :

. ige .
Dy V) = 0u @ —ig [V i, @] + 97 {0u® —ig [V i, @] . Ve } + O(g?). (2.12)
We take an ansatz;

\7x,u = aUy ; + BinyUy ;i + BoamyUy ;p + BaUx Nt + BaUx My

+ VAU N+ YoMuUs M =+ Y3NXUx M+ YanxUx M, (2.13)
Viu = P{;}Vx,ua Pop = \/\7x,p\7xtu, (2.14)
ey 1= Ux,quTu, (2.15)
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Figure 1: (Left panel) The gauge symmetry of the new formulation. (Right panel) The correlation functions for

the color vector fieldh, : < nn >, where AB) elemensA < B) are plotted.

where the variabl‘é’xﬂu is represented by polynomialsldf ;,, my andny and should satisfy the property
of the gauge transformatioi2.0), (2.3) and R.7). Here R.14 represents the polar decompaosition
for obtaining the unitary matrixk , from V ,, whereP, is a Hermitian matrix,P)Z“ = Pu. By
substituting2.13) into (2.4), the coefficients of/X,,l are determined as

\7)(7“ - GUX7“ + VnXUX’“ nx_;,_y + meUX"“ mx+u. (216)

Note that'2.13) is used instead ofy , to determine the coefficients as a necessary condition, since the
relationDy, [Vy u|nx = O is obtained ifDj, Vi ulnx = O is satisfied. Then, by usin@(15) and 2.5), the
coefficients in'2.1€) are determined ag= 6a up toO(¢) for Xy ;, and the overall factom can be set

to |a| = 1 satisfyinig the special unitary condition g ;. In the continuum limitVy , is given by

Vi = Tr(Ay ye )Ny + Tr(Ayg yMy )My 4+ 1/9 [0, N | +1/9 [dumye, My ] (2.17)

which agrees withV (') in the continuum theoryX, can be defined in two ways; one is a definition
on the midpointXy ;, = Ay ;, — Vy ,, and the otheKy ;, on a lattice site fronXy ,, in terms ofA, ,and
VX’,[J:

: : 2e2
anu — exm_lg(‘:XXJJ) — UXIJVXT[J — eXp<—Ig£ (Ax’_’“ _VX’,H) + gT [AX’,[J)VX/.,[J] +0(£3)) .

3. Determining the new variables from lattice data

In this section, we consider a procedure for obtainfhg andX, ;, from numerical simulations.
To calculateP, ,;, in general, we need to diagonali?,éu = \7X,“\7XT,1 by solving an eigenvalue problem.
Here we discuss the way to obtaip, using the nMAG condition.

Suppose a gauge transformati®pn € SU(3) diagonalizes the color vector fieldg andmy such
that ©,n@} = A% andO,m,0! = A8. This is always possible sindey,m,] = 0 is satisfied. Using
this gauge transformatiotly ,, is transformed aSUy ,, = @xe,uGI +u» andVy , andP , can also be
diagonalized at the same time, since we obtain the relatns my] = 0, [Py, Ny = 0 using the
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relationsVy My = MV andVy Ny = NV from (2.4). Indeed, we can rewrite2(16) to a
diagonalized form
(3.1)

where®u," denotes arfAB) element of°Uy ;,. Then, we have the diagonalized formRyf,, andVx
is given by

G)ull @u22 ®u33
(3.2)

OVx,u = O [ Vx Il] Ox+u = ad|ag< uX-,Il e
X, H

Therefore, the decompositiondf , is reduced to the problem of finding out sucteas: Oy The
solutionéX can be obtained by the nMAG condition. Singgac is invariant under the local gauge
transformation oSU(3),-g, the solution of the nMAG condition selects a gauge orbit in the extended
gauge symmetry. Therefore we can always choose such a gauge transformation that diagonalizes color
fields,®ny, = A3 and®my = Ag. Using thiséL the nMAG condition is rewritten to the same expression
as the conventional MAG conditio(= G_)XQ):

T

:z(Glll+G22‘+G332). (3.3)
XH

)

Note that this NMAG condition does not fix the gauge of the original Yy ,, but selects a gauge
orbit along the local gauge symmetBU(3).,-g. The conventional MAG condition corresponds to
a special gauge choice 8hy = A% and®m, = A2 on the gauge orbit. When we choose an overall
gauge condition of the original YM theory, for example, the lattice Landau gaﬁl.g@, Uxu, the
configurations ofiy andmy are determined using the gauge transforma@;anuxu = ©,CU, ,JG)XHJ,

Ny = OI)‘BGXa my = @I/\Sem (3.4)
G
o U%}u Gu22 Gu33 _
Vg u = aOydiag L [ [euzz, 3] Oxip- (3.5)
X, U

4. Lattice data

Numerical simulations are done using the standard Wilson action of SU(3) YM. The configurations
are generated on 86" lattice at = 5.7 using the Cabibbo-Marinari heatbath algorit®@m[ After
5000 thermalizing sweeps with the cold start, 120 configurations are stored every 100 sweeps. We
choose the lattice Landau gauge (LLG) for the overall gauge fixing of the original YM theory. In
gauge fixing procedure, we use the over-relaxation algorithm to update link variables by using the
gauge transformation of SU(2) sub-groups in the SU(3) gauge transformation. In order to avoid the
lattice Gribov copy problem in the both LLG and nMAG condition, we try to find out the configuration
which absolutely minimizes the gauge fixing functional. In the process of minimizing the gauge fixing
functional forUy ;,, we have prepared 16 replicas generated by random gauge transformations form
Uy, and among them we have selected the configuration which have attained the least value of the
functional.
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Figure 2: (Left Panel) The histgram of monopole charg@® andQ®. The number of the monoples are
plotted for 120 configurations. Each distribution with integer valued monopole charges are represented on the
grids. This is a preliminary resut. (Right panel) The logarithm plot of correlation functions of the gauge potential
and the new variable®aa, Dyy andDyxx.

First, we check color symmetry of our new formulation, which is the gl@ia(3) symmetry
to be preserved in LLG. Under the global gauge transformation, the gauge fixing functional of LLG,
FLic(d] = SxuTr(%x ), is invariant, while the color fieldsy, my change their directions. Therefore,
we measure the space-time average of the color vector fi@ldsTr(A”ny) andm = Tr(A”*m,) and
the correlation functions. The right panel of Figirshows, for examples, the correlation functions
for ny. The lattice data show that the color symmetry is preser{eth = 0, (m*) = 0 and

(neng) = 8"BDnn(l),  (memf) = 8*EDmm (1), (nEmP) =0, (y = x+1f1, u=4).

Note that this preserving color symmetry is an advantage of our new formulation.

Next, we define a gauge invariant magnetic monopole using the "AbelianVparh the similar
way to the SU(2) cas®]. Two kinds of the gauge invariant magnetic monopole curremts (, 2) are
defined by

1
ki = 5 €uvapd" Oy, (4.1)
1 ._ 1 1 -1 -1
Oyp = arg Tr< (3| +Nx+ \@mx) Vx,an+a.BVx+B,an,B> ’ (4.2)
2) . _ 1 2 -1 -1
O, =arg Tr< <3I — \/gmx> VXsC’VX+0(73Vx+B,qu,ﬁ> . (4.3)

The gauge invariance @fx""g is clear by definition. Note thafi)ér""z3 is thea-th element of the diagonal-
ized expression 0¥,V uwVigy 1 Viy i-€., diag( exp(ig?e?@Y,,), exp(ig?e207,), exp(ig?e203,)).
The left panel of Figuré shows the histogram of the magnetic monopole charges, indicating that
integer valued magnetic monopoles are obtained.

Finally, we investigate the propagators of the new variables. The correlation functions (propaga-
tors) of the new variables and the gauge potential of YM are defined by

Doo(X—Y) = (0 ()0 (y)) for Op(X) = Ay 1, Vie s X5 4 (4.4)

where an operato@ﬁ(x) is defined as a linear type, e.g\v , = QUW —U)Iu> / (2eg). The right
panel of Figuré shows preliminary measurements of correlation function3f Dyy andDxx. The
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correlationDyy corresponding to the "Abelian" part dumps slowly and has almost the same dumping
rate adDaa, While theDxx corresponding to the "off-diagonal” part dumps quickiis suggests that

the "Abelian” part of the gluon propagator is dominated in the infrared region, the and mass generation
of the "off-diagonal” gluon.

5. Summary and discussion

We have proposed a new compact lattice formulations of SU(3) YM theory as an extension of the
SU(2) cased][6][7]. This formulation has enabled us to define a gauge invariant magnetic monopole
in the compact formulation which guarantees that the magnetic charge is integer-valued and obeys the
Dirac quantization condition. We have shown that the new variables can be obtained in any gauge of
YM theory. It is crucial to introduce the color fieldgx) andm(x) to maintain the color symmetry
of the original YM theory. We have performed the numerical simulations and measurements on a
lattice. We have shown that color symmetry is preserved for the new variables, and the integer-valued
gauge invariant magnetic monopoles are obtained. Though these results are preliminary, the lattice data
suggest infrared "Abelian" dominance and mass generation of the "off-diagonal” gluon by investigating
the propagators of the new variables. The mass generation of gluon can be investigated in the same
way in theSU(2) case, and these are under investigation.

Through these numerical simulations, we have shown that our new formulation enables the gauge
independent investigation of the confinement mechanism to overcome the problems in the conventional
studies based on a special gauge such as the MA gauge. Further studies such as "Abelian" dominance,
monopole dominance and mass generation of gluons in LLG and also in the other gauges, are important
to establish the dual superconductivity picture.
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