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(DSE) and lattice data for the gluon and ghost propagators in Landau gauge is discussed. For the

gluon propagator, the lattice data is compatible with the DSE infrared solution with an exponent

κ ∼ 0.53, measured using a technique that suppresses finite volume effects and allows to model

these corrections to the lattice data. For the ghost propagator, the lattice data does not seem to

follow the infrared DSE power law solution.
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The problem of quark and gluon confinement in QCD is still not understood [1]. In the Lan-
dau gauge, two proposed confinement mechanisms, the Kugo-Ojima and the Gribov-Zwanziger
scenarios, relate gluon confinement to the infrared properties of gluon and ghost propagators.

The investigation of the infrared behaviour of gluon and ghost propagators requires a non-
perturbative formulation of QCD such as the Dyson-Schwinger equations (DSE) or the lattice for-
mulation of QCD. The nature of the lattice QCD approach allows for a study of the propagators
including all non-perturbative physics. However, the lattice is limited to a finite volume, therefore
the access to the deep infrared regime of QCD requires a proper analysis of finite volume effects.
On the other hand, the DSE (for a recent review see [2]) were solved analitically in the infrared,
predicting a pure power law behaviour for the gluon and ghost dressing functions,

Zgluon(q
2) ≡ q2D(q2) ∼ (q2)2κ , Zghost(q

2) ≡ q2G(q2) ∼ (q2)−κ . (1)

The solution requires a truncation of an infinite tower of equations and a parametrization of a
number of vertices. Assuming ghost dominance and a bare ghost-gluon vertex, DSE estimated an
exponent κ = 0.595 [3]. This value for κ , being above 0.5, implies a vanishing gluon propagator
and a divergent ghost dressing function, in agreement with the confinement criteria referred above.
Other studies [4, 5, 6, 7, 8] gave further support to this picture.

On the lattice, in order to test reliably for the power law solutions (1) one needs very large
volumes. A possible cheaper solution could be the use of large asymmetric lattices, i.e. lattices as
L3

s ×Lt , with a large Lt — see [9] and references there in. Although there are non-negligible finite
volume effects due to the small spatial lattice extension, the large temporal lattice extension allow
the access to momenta below 100-200 MeV, and a direct test on the validity of the solution (1).

So far, we have computed κ by a direct fit of (1) to the asymmetric lattice data. The results
show that κ increases with the spatial lattice volume [9]. In this proceeding we report on a technique
[10] that seems to provide a volume independent value for the gluon exponent κ .

The lattice setup used in this work is summarized in table 1. The configurations were gauge
fixed to the Landau gauge using a Fourier accelerated Steepest Descent method, starting from

Lattice Update Therm. Sep. # Conf.

83 ×256 7OVR+4HB 1500 1000 80

103 ×256 7OVR+4HB 1500 1000 80

123 ×256 7OVR+4HB 1500 1000 80

143 ×256 7OVR+4HB 3000 1000 128

163 ×256 7OVR+4HB 3000 1500 155

183 ×256 7OVR+4HB 2000 1000 150

163 ×128 7OVR+2HB 3000 3000 164

Table 1: Lattice setup. All sets of configurations were generated using a combined Monte Carlo sweep of
overrelaxation (OVR) and heat bath (HB) updates. The number of thermalization (Therm.) and separation
(Sep.) sweeps refers to combined sweeps.
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Figure 1: Rgluon
Z [n] as a function of Rq[n] for the lattices with Lt = 256.

the identity gauge transformation. Then, the gluon propagator was computed using the same
definitions as in [9]. The ghost propagator was computed using a plane-wave source [11]. Statisti-
cal errors on the propagators were computed using the jackknife method. Otherwise, the statistical
errors were computed using the bootstrap method with a 68% confidence level.

On the lattice, the finite volume and discretization effects can be suppressed by defining ratios
between similar quantities. For example, consider some quantity A(x). Suppose that the lattice
effects are given by 1+δ (x), with δ � 1 . If x′ ∼ x, one can write

A(x′)(1+δ ′)

A(x)(1+δ )
'

A(x′)
A(x)

(1+δ ′)(1−δ ) ∼
A(x′)
A(x)

(1−δ 2), (2)

i.e. the error on the ratio is of second order in δ .

Let’s take the gluon propagator. If, in the continuum limit, we have Z(q2) = ω(q2)2κ , on a
finite lattice we have, in general,

Zlatt(q
2) = ω(q2)2κ ∆(q) (3)

where ∆(q) can be viewed as a multiplicative correction to the continuum function. Then, taking
ratios of the gluon dressing function between consecutive temporal momenta,

q[n] = q4[n] =
2
a

sin
(πn

Lt

)

, n = 0, 1, . . .
Lt

2
(4)

and taking logarithms, one gets

ln

[

Zlatt(q2[n+1])

Zlatt(q2[n])

]

= 2κ ln

[

q2[n+1]

q2[n]

]

+ C(q). (5)
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Ls qmax: 191 MeV 238 MeV 286 MeV 333 MeV 381 MeV

8 κ 0.526(27) 0.531(19) 0.531(13) 0.522(16) 0.527(12)

C −0.179(54) −0.194(34) −0.193(19) −0.171(28) −0.184(18)

χ2/d.o. f . 0.12 0.11 0.08 0.48 0.54

10 κ 0.511(35) 0.531(25) 0.525(21) 0.523(17) 0.527(16)

χ2/d.o. f . 0.69 0.98 0.74 0.56 0.50

12 κ 0.509(31) 0.517(21) 0.508(18) 0.521(18) 0.530(14)

C −0.094(56) −0.112(35) −0.094(25) −0.119(27) −0.138(18)

χ2/d.o. f . 0.11 0.16 0.33 0.84 1.03

14 κ 0.536(24) 0.540(19) 0.548(16) 0.545(12) 0.542(11)

χ2/d.o. f . 0.33 0.20 0.39 0.34 0.34

16 κ 0.539(22) 0.528(17) 0.534(12) 0.536(12) 0.539(11)

C −0.125(43) −0.102(30) −0.112(19) −0.118(14) −0.123(12)

χ2/d.o. f . 1.77 1.24 0.96 0.78 0.68

18 κ 0.529(20) 0.516(16) 0.523(14) 0.536(11) 0.5398(95)

C −0.099(36) −0.068(25) −0.085(19) −0.111(14) −0.119(13)

χ2/d.o. f . 0.39 0.77 0.85 1.79 1.58

Table 2: Linear fits of Rgluon
Z [n] as a function of Rq[n].

Defining

Rgluon
Z [n] ≡ ln

[

Zlatt(q2[n+1])

Zlatt(q2[n])

]

, Rq[n] ≡ ln

[

q2[n+1]

q2[n]

]

, (6)

equation (5) becomes

Rgluon
Z [n] = 2κRq[n] + C(q). (7)

Figure 1 shows these functions for the asymmetric lattices with Lt = 256. For each lattice
size, the data points define straight lines in the infrared region, i.e. it seems that C(q) is a constant,
C(q) ≡ C. This hipothesis can be tested by fitting Rgluon

Z [n] to a linear function of Rq[n]. The
corresponding values for κ and C are reported in table 2. Note that the measured κ values are
stable against variation of the fitting range and spatial lattice size. Furthermore, within one standard
deviation, κ > 0.5 as in the solution of the DSE.

The results of the linear fit suggest a parametrization of the finite volume effects. From the
definition of ∆, it follows that ∆(q[n+1]) = ∆(q[n])eC and

d∆(q)

dq
∼

∆(q[n+1])−∆(q[n])

q[n+1]−q[n]
∼ ∆(q)

eC −1
2π
aLt

= ∆(q)A (8)

where A is a constant. The integration of this equation gives

∆(q) = ∆0 eAq , (9)
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Ls qmax: 191 MeV 238 MeV 286 MeV 333 MeV 381 MeV

8 κ 0.526(26) 0.533(19) 0.534(11) 0.523(10) 0.524(9)

A(GeV−1) −3.75±1.1 −4.06(68) −4.11(34) −3.69(28) −3.73(23)

χ2/d.o. f . 0.09 0.12 0.08 0.62 0.51

10 κ 0.511(27) 0.536(22) 0.534(17) 0.531(14) 0.534(13)

χ2/d.o. f . 0.53 1.08 0.73 0.58 0.49

12 κ 0.508(31) 0.515(22) 0.507(15) 0.520(12) 0.537(9)

A(GeV−1) −1.9±1.2 −2.25(78) −1.92(46) −2.40(36) −2.96(23)

χ2/d.o. f . 0.07 0.12 0.24 0.84 1.94

14 κ 0.538(23) 0.542(18) 0.552(14) 0.551(11) 0.546(9)

χ2/d.o. f . 0.24 0.17 0.47 0.36 0.45

16 κ 0.541(22) 0.532(16) 0.535(10) 0.539(9) 0.543(8)

A(GeV−1) −2.67(84) −2.29(54) −2.39(31) −2.53(24) −2.66(18)

χ2/d.o. f . 1.15 0.78 0.55 0.50 0.54

18 κ 0.529(20) 0.516(15) 0.523(12) 0.539(9) 0.550(8)

A(GeV−1) −2.05(79) −1.50(51) −1.75(33) −2.31(24) −2.66(20)

χ2/d.o. f . 0.28 0.59 0.54 2.14 2.71

Table 3: Fits of the gluon dressing function to the pure power law with exponential correction.

i.e. the lattice dressing function is given by

ZLat(q
2) = ω

(

q2)2κ
eAq ; (10)

note that now ω has absorved the constant ∆0. The finite volume effects are summarized by the
constant A. The results of fitting the lattice data to (10) are reported in table 3. The κ values in
tables 2 and 3 are, as expected, essentially the same. Furthermore, the constants A and C are, in
general, decreasing functions of the (spatial) lattice volume, and should go to zero in the infinite
volume limit.

The ratio method provides similar results when used with the 163 ×128 lattice data. As shown
in [9], the gluon data from 163 × 128 and 163 × 256 lattices are compatible within errors and one
expects similar values for the constant A for these two lattices. Indeed, the fits to (10), see table 4,
give essentially the same A. Given the relation between A and C,

A =
eC −1

2π
aLt

∼C
aLt

2π
, (11)

we expect, as observed, that C128 ' 2×C256. Furthermore, from table 4, one can conclude that the
effects of Gribov copies are not resolved by the statistical precision of our simulation.

Note that the estimated gluon infrared exponent κ ∼ 0.53 implies a vanishing gluon propagator
at zero momentum. Figure 2 shows the bare D(0) as a function of x ≡ 1/V . In what concerns the
infinite volume D(0), a linear (D∞(0)+ bx) or quadratic (D∞(0)+ bx + cx2) extrapolations give a
non-zero D∞(0), but a power law (axb) extrapolation, which implies D∞(0) ≡ 0, is also possible,
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Figure 2: Values of D(0) as a function of 1/V .

and gives b = 0.10. Curiously, this value is very close to the figure reported in a recent investigation
of the DSE on a torus [12], b ∼ 0.095.

In what concerns the ghost propagator, see [10] for details, we were not able to see a linear
behaviour of Rghost

Z [n] as a function of Rq[n]. Assuming that the ghost dressing function really
follows a pure power law in the infrared, the only result one could extract is a kind of lower bound
for the ghost infrared exponent, κ ∼ 0.29.

Finally, a few words about the running coupling defined from the gluon and ghost propagators,

αS(q
2) = αS(µ2)Z2

ghost(q
2)Zgluon(q

2) . (12)

For the lattice data strong coupling constant see figure 3. If the DSE predict a finite non-zero value
for αS(0) = 2.972, the lattice data seems to go to zero. This behaviour is in agreement with the
solution of the Dyson-Schwinger equations on a torus [12]. According to this study, one should go
to even larger lattices to become closer to the continuum. This is a very ambitious challenge for
the next years.

Ratios Modelling

163 ×Lt κ C χ2/do f κ A(GeV−1) χ2/do f

Lt = 256 0.539(11) −0.123(12) 0.68 0.543(8) −2.66(18) 0.54

Lt = 128 [ID] 0.541(19) −0.239(38) 0.01 0.542(20) −2.56(39) 0.01

Lt = 128 [CEASD] 0.539(19) −0.234(36) 0.15 0.539(18) −2.47(36) 0.10

Table 4: Results obtained for the lattices with Ls = 16 (q < 381MeV). For the lattice 163 ×128, two gauge
fixing methods were considered. ID stands for a gauge fixing started from the identity gauge transformation,
and CEASD stands for the gauge fixing method devised in [13], aiming to find the global maximum of FU [g].
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Figure 3: Comparison of results for αS(q2) using both lattice QCD and DSE.
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