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Abelian mechanism of non-Abelian color confinement is observed in a gauge-independent way

by high precision lattice Monte Carlo simulations in gluodynamics. An Abelian gauge field is ex-

tracted with no gauge-fixing. A static quark-antiquark potential derived from Abelian Polyakov

loop correlators gives us the same string tension as the non-Abelian one. The Hodge decomposi-

tion of the Abelian Polyakov loop correlator to the regular photon and the singular monopole parts

also reveals that only the monopole part is responsible for the string tension. The investigation

of the flux-tube profile then shows that Abelian electric fields defined in an arbitrary color direc-

tion are squeezed by monopole supercurrents with the same color direction, and the quantitative

features of flux squeezing are consistent with those observed previously after Abelian projections

with gauge fixing. Gauge independence of Abelian and monopole dominance strongly supports

that the mechanism of non-Abelian color confinement is due to the Abelian dual Meissner effect.
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1. Introduction and summary

Color confinement in quantum chromodynamics (QCD) is still an important unsolved prob-
lem. ’t Hooft [1] and Mandelstam [2] conjectured that the QCD vacuum is a kind of a magnetic
superconducting state caused by condensation of magnetic monopoles and an effect dual to the
Meissner effect works to confine color charges. However, to find color magnetic monopoles which
condense is not straightforward in QCD.

An interesting idea to realize this conjecture is to project SU(3) QCD to an Abelian [U(1)]2

theory by a partial gauge fixing [3]. Then color magnetic monopoles appear as a topological object.
Condensation of the monopoles causes the dual Meissner effect [4, 5, 6]. However there are infinite
ways of the above partial gauge-fixing and whether the ’t Hooft scheme is gauge independent or
not is not clear. Moreover why non-Abelian color charges are confined in the framework of the
Abelian mechanism is not clarified.

Numerically, an Abelian projection in non-local gauges such as the maximally Abelian (MA)
gauge [7, 8] has been found to support the Abelian confinement scenario beautifully [9, 10]. Very
recently, the present authors have shown that the Abelian dominance and the dual Meissner effect
are observed clearly also in local unitary gauges such asF12 and Polyakov (PL) gauges [11]. These
results strongly suggest that the Abelian confinement mechanism is gauge-independent.

Here we study the QCD vacuum after extracting an Abelian link field in a completely gauge-
independent way without adopting any special local or non-local gauge fixing. We observe that an
Abelian confinement mechanism due to condensation of monopoles is realized. A static potential
derived from Abelian Polyakov loop correlators gives us the correct string tension. Moreover only
the monopole part in the Abelian Polyakov loop is responsible for the string tension. Abelian
electric fields defined in an arbitrary color direction are squeezed and the corresponding monopole
currents play the role of magnetic supercurrents. States which are neutral in all color directions
are not confined and appear as a physical state. It is just a color-singlet state. Hence, confinement
of non-Abelian color charges, not that of Abelian charges, is explained in the framework of the
gauge-independent Abelian mechanism.

2. Abelian dominance
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Figure 1: The Abelian static potential in comparison with the non-Abelian one. The solid lines denote the
best fit to a functionVfit .
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Firstly we discuss an Abelian static potential. We generate thermalized gluon configurations
using the Wilson action at a coupling constantβ = 2.5 on the latticeN4 = 244, where the lattice
spacing a(β ) = .0836(8) [fm]. For simplicity we consider SU(2) gluodynamics, since essential
features are not altered in SU(3). We extract a 2×2 diagonal Abelian link field in an arbitrary color
direction. For example, in theσ3 direction,

Uµ(s) = U0
µ(s)+ iσ⃗U⃗µ(s) = Cµ(s)·diag

[
eiθµ (s),e−iθµ (s)

]
,

whereθµ(s) = arctan(U3
µ(s)/U0

µ(s)). Note that we can do the same also in theσ1 or σ2 direction,
since all three components are equivalent with no gauge-fixing. By using the multi-level noise
reduction method [12], we evaluate the Abelian static potential from the correlation function of the
Abelian Polyakov loop operator

PA = exp[i
N−1

∑
k=0

θ4(s+k4̂)] , (2.1)

separated at a distanceR. For the multi-level method, the number of sublattices adopted is 6 and the
sublattice size is 4. The results are surprisingly beautiful as seen from Fig.1. To reduce the lattice
artifact due to finite-lattice cutoff, we plot the potential usingO(a2) improved distances [13, 14].
We try to fit the data to a usual functionVfit = σR− c/R+ µ and find almost the same string
tension and the Coulombic coefficient as shown in Table1, indicating Abelian dominance. Here
the number of independent vacuum configurations is 10 in all cases. The errors are determined by
the jackknife method. Our results of the string tension are consistent with theoretical observations
on the basis of reasonable assumptions [15, 16].

Table 1: Best fitted values of the string tensiona2σ , the Coulombic coefficientc and the constantaµ . NA
and A-NGF denote Non-Abelian and Abelian with no gauge-fixing.Niup is the number of internal updates
in the multi-level method. FR means the fitting range. Theχ2 for the central value isχ2/Nd f < 0.1.

σa2 c µa FR(R/a) Niup

NA 0.0348(7) 0.243(6) 0.607(4) 3.92 - 9.97 15000
A-NGF 0.0352(16) 0.231(39) 1.357(17) 4.94 - 9.97 160000

3. Monopole dominance

Secondly we discuss the role of monopole contribution. The monopole part of the operator can
be extracted as follows. The Abelian Polyakov loop (2.1) can be written by a product of a photon
and a Dirac-string parts [17]. Note that

θ4(s) = −∑
s′

D(s−s′)[∂ ′
νθν4(s′)+∂4(∂ ′

νθν(s′))] , (3.1)

whereD(s− s′) is the lattice Coulomb propagator,θµν(s) = ∂µθν(s)− ∂νθµ(s) and∂ν(∂ ′
ν) is a

forward(backward) difference. We have used∂ν∂ ′
νD(s−s′) = −δss′ . The second term in the right-

hand side of (3.1) does not contribute to the Abelian Polyakov loop (2.1). Now θµν(s) = θ̄µν(s)+

3
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Figure 2: The static potential (left) and the force (right) from the Abelian (PA), the monopole (Pmon) and
the photon contributions (Pph) in comparison with the non-Abelian ones.

Table 2: Best fitted values of the string tensionσa2 and the Coulomb coefficientc. M-NGF (P-NGF)
denotes the monopole (the photon) part.

σa2 c µa FR(R/a) χ2/Nd f

NA 0.181(8) 0.25(15) 0.54(7) 3.92 - 8.50 1.00
A-NGF 0.183(8) 0.20(15) 0.98(7) 3.92 - 8.23 1.00
M-NGF 0.183(6) 0.25(11) 1.31(5) 3.92 - 6.71 0.98
P-NGF -0.0002(1) 0.010(1) 0.48(1) 4.94 - 9.44 1.02

2πnµν(s) (|θ̄µν | < π), wherenµν(s) is an integer corresponding to the number of the Dirac string.
Hence we obtainPA = Pph ·Pmon, where

Pph = exp{−i
N−1

∑
k=0

∑
s′

D(s+k4̂−s′)∂ ′
ν θ̄ν4(s′)},

Pmon = exp{−2π i
N−1

∑
k=0

∑
s′

D(s+k4̂−s′)∂ ′
νnν4(s′)}.

We callPph andPmon the photon and the monopole contributions, respectively, since the Dirac string
nβγ(s) leads us to a monopole currentkµ(s) = (1/2)εµαβγ∂αnβγ(s+ µ̂) [18].

We need a non-local Coulomb propagator in the separation, so that the multi-level noise reduc-
tion method cannot be applied in this case. Here we consider aT ̸= 0 system in the confinement
phase with the Wilson action on 243 × 4 lattice. We use about 6000 thermalized configurations
at β = 2.2, where the lattice spacing isa(β ) = .191(8) [fm]. Since the expectation values of the
correlation functions ofPA, Pph andPmon are still very small with no gauge-fixing, we adopt a new
noise reduction method. For a thermalized vacuum ensemble, we produce many gauge copies ap-
plying random gauge transformations, compute the operator for each copy, and take the average of
all copies. Note that as long as a gauge-invariant operator is evaluated, such copies are identical,
but they are not if a gauge-variant operator is evaluated. Practically, we prepare 1000 gauge copies
for each configuration. We also apply one-step hypercubic blocking (HYP) [19] to the temporal
links for further noise reduction.

We obtain very good signals for the Abelian, the monopole and the photon contributions to
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Figure 3: The profile of the Abelian electric fields forW(R= 5a,T = 5a).

the static potential as shown in Fig.2. We try to fit the potential in Fig.2 to the functionVfit

and extract the string tension and the Coulombic coefficient of each potential as summarized in
Table2. Abelian dominance is seen again beautifully in this case. Moreover, we can see monopole
dominance, namely, only the monopole part of the Polyakov loop correlator is responsible for the
string tension. The photon part has no linear potential. The agreement among the string tensions
coming from non-Abelian, Abelian and monopole Polyakov loop correlators is almost perfect as
seen also from the force in Fig.2 in comparison with the MA case, where only 80-90 percent
agreement is observed at finite lattice spacings. The short-range behavior of the potential may be
affected by HYP.

4. Abelian dual Meissner effect

Thirdly we discuss the Abelian dual Meissner effect. We investigate the Abelian flux-tube pro-
file by evaluating connected correlation functions [20, 21] between a Wilson loopW and Abelian
operatorsOA constructed by Abelian link fields,

⟨OA(r)⟩W =
⟨Tr

[
LW(r = 0,R,T)L†σ3OA(r)

]
⟩

⟨Tr [W(R,T)]⟩
,

whereL is a product of non-Abelian link fields (a Schwinger line) connecting the Wilson loop
with the Abelian operator. We may use the cylindrical coordinate(r,φ ,z) to parametrize the the
q-q̄ system, where thez axis corresponds to theq-q̄ axis andr to the transverse distance. We
are interested in the field profile as a function ofr on the mid-plane of theq-q̄ distance. In this
calculation, we employ the improved Iwasaki gauge action [22] with the coupling constantβ =
1.20, which corresponds to the lattice spacinga(β ) = .0792(2) [fm] [ 23]. The lattice volume is
324 with periodic boundary conditions. We generate 4000 thermalized configurations. To improve
a signal-to-noise ratio, the APE smearing technique is applied to the Wilson loop [24].

We measure all components of the Abelian electric fieldsEAi(s) = θ̄4i(s) and find that only
EAz is squeezed as shown in Fig.3. We try to fit ⟨EAz⟩W to a function f (r) = c1exp(−r/λ )+ c0.
Hereλ corresponds to the penetration length. We obtainλ = 0.128(2) [fm], which is similar to
those obtained in the MA gauge and unitary gauges [11].

To see what squeezes the Abelian electric field, let us study the Abelian (dual) Ampère law

∇⃗× E⃗A = ∂4B⃗A +2π⃗k ,

5
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Figure 4: The curl of the Abelian electric field, magnetic displacement currents and monopole currents for
W(R= 5a,T = 5a).
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Figure 5: The correlation between the Wilson loop and the squared monopole density forW(R= 5a,T =
5a). The solid line denotes the best exponential fit.

whereBAi(s) = (1/2)εi jk θ̄ jk(s). Each term is evaluated on the same mid-plane as for the electric
field. We find that only the azimuthal components are non-vanishing, which are plotted in Fig.4.
Note that if the electric field is purely of the Coulomb type, the curl of electric field is zero. Con-
trary, the curl of the electric field is non-vanishing and is reproduced only by monopole currents.
The magnetic displacement current is almost vanishing. These behaviors are clearly a signal of the
Abelian dual Meissner effect, which are quite the same as those observed in the MA gauge [10].

5. Vacuum type

Fourthly, we may estimate the vacuum type by evaluating also the coherence lengthξ from the
correlation function between the Wilson loop and the squared monopole densityk2

µ(s) [25]. The
correlation function is plotted in Fig.5 and the coherence length extracted from the functional form
g(r) = c′1exp(−

√
2r/ξ )+c′0 is ξ/

√
2 = 0.102(3) [fm]. The GL parameter

√
2κ = λ/ξ = 1.25(6)

is close to the values obtained with gauge fixing[11]. Since the Wilson loop used here may still be
small, what we can say is that the vacuum type is near the border between the type 1 and 2.

6. Confinement of non-Abelian color charge

The above results are quite remarkable in the sense that confinement of non-Abelian color
charges can be explained in the framework of the Abelian dual Meissner effect. Since no gauge-
fixing is done, gauge fields in any color direction are equivalent. Abelian electric fields in all color
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directions are squeezed due to monopoles in the corresponding color direction. An Abelian neutral
state in all color directions can survive as a physical state, and such a state is only the color singlet
state. For example, consider meson statesucūc anddcd̄c, whereuc (dc) is an eigenstate ofσ3/2
with an eigenvalue 1/2 (−1/2). These are Abelian neutral in theσ3/2 direction. Similarly,UcŪc

andDcD̄c are Abelian neutral in theσ1/2 direction, whereUc = (uc+dc)/
√

2 (Dc = (uc−dc)/
√

2)
is an eigenstate ofσ1/2. Note thatucūc (UcŪc) anddcd̄c (DcD̄c) contain both Abelian charged and
neutral states in theσ1/2 (σ3/2) direction. But a SU(2) singlet stateucūc + dcd̄c = UcŪc + DcD̄c

is Abelian neutral in all color directions. Hence confinement of non-Abelian color charge can be
explained in terms of the Abelian confinement scenario of the dual Meissner effect.

References

[1] G. ’t Hooft, in Proceedings of the EPS International, edited by A. Zichichi, p. 1225, 1976.

[2] S. Mandelstam, Phys. Rept.23, 245 (1976).

[3] G. ’t Hooft, Nucl. Phys.B190, 455 (1981).

[4] Z. F. Ezawa and A. Iwazaki, Phys. Rev.D25, 2681 (1982).

[5] T. Suzuki, Prog. Theor. Phys.80, 929 (1988).

[6] S. Maedan and T. Suzuki, Prog. Theor. Phys.81, 229 (1989).

[7] T. Suzuki, Prog. Theor. Phys.69, 1827 (1983).

[8] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J. Wiese, Phys. Lett.B198, 516 (1987).

[9] T. Suzuki, Nucl. Phys. Proc. Suppl.30, 176 (1993).

[10] Y. Koma, M. Koma, E.-M. Ilgenfritz, and T. Suzuki, Phys. Rev.D68, 114504 (2003) and references
therein.

[11] T. Sekido, K. Ishiguro, Y. Koma, Y. Mori, and T. Suzuki, Phys. Rev.D76, 031501 (2007).
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