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1. Introduction

The Svetitsky-Yaffe conjecture [1, 2] states that the Yang-Mills finite temperature transition in di-
mension d +1 is described by an effective spin model in d dimensions with short range interactions.
Combining this idea with strong coupling expansions and inverse Monte-Carlo (IMC) methods we
analyse the relationship between SU(3) YM theory in 3+1 dimensions and effective theories for-
mulated as Z3 spin models in 3 dimensions.

2. SSSUUU(((333))) and characters of representations

Our effective operators are class functions on SU(3). With group elements in diagonal form, g =
diag(eiφ1 ,eiφ2 ,e−i(φ1+φ2)), we associate a group character in the fundamental representation by

P ≡ trg ≡ χ10(g) = eiφ1 + eiφ2 + e−i(φ1+φ2) , (2.1)

with the typical example being the Polyakov loop. The parameterisation (2.1) implies the reduced
Haar measure on the maximal Abelian torus,

dµred = J2dφ1dφ2, J2 = 15−6χ11 +3χ30 +3χ03−χ22. (2.2)

Using Young tableaux one can express all characters χpq with Dynkin labels [p,q] in terms of the
fundamental ones, P and P∗.

3. Observables

We discuss YM theory on a N3
s ×Nt-lattice. The Polyakov loop Pxxx is measured in terms of its

lattice average,

P ≡ 1
V ∑

xxx
Pxxx, V = N3

s . (3.1)

The observable relevant for the analysis of antiferromagnetic phases is

M ≡ 1
V ∑

xxx
Pxxx sgn(xxx), sgn(xxx)≡ (−1)

∑i xi (3.2)

and measures the difference of the Polyakov loop on odd and even sublattices.
Since we will have to deal with phases where the traced Polyakov loop is located halfway

between the SU(3) center elements we project the value of the traced Polyakov loop onto the
nearest Z3-axis and define a rotated Polyakov loop by

Pr =


ReP : P ∈F

−1
2 ReP+

√
3

2 ImP : P ∈F ′

−1
2 ReP−

√
3

2 ImP : P ∈F ′′

. (3.3)
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4. Effective models for Yang-Mills theory

We start with the well-known lattice Wilson action

SW = β ∑
�

(
1− 1

NC
Re tr U�

)
, β =

6
a4g2 (4.1)

and perform a strong coupling expansion (for small β ). Since the resulting ‘operators’ (Polyakov
loop monomials) are dimensionless there is no natural ordering scheme. We therefore use a trun-
cation scheme based on:

• Ordering by powers of β which are closely related to the dimension of the corresponding
group representations.

• Ordering by the distance across which the Polyakov loops are coupled.

In compact form the strong coupling expansion is given by

Seff = ∑
r

∑
R1...Rr

∑
`1...`r

c`1...`r
R1...Rr

(β )
r

∏
i=1

SRi,`i = ∑
i

λiSi (4.2)

with the basic building blocks

SR,` ≡ χR(Pxxx)χ
∗
R(Pyyy)+ c.c., `≡ 〈xxxyyy〉 . (4.3)

Here r counts the number of link operators contributing at each order. The coefficients c`1...`r
R1...Rr

are the couplings between the operators SRi,`i sitting at nearest-neighbor (NN) links `i ≡ 〈xxxi,yyyi〉
in representation Ri. The effective action hence describes a network of link operators that are
collected into (possibly disconnected) ‘polymers’ contributing with ‘weight’ c`1...`r

R1...Rr
. One expects

the ‘weights’ or couplings to decrease as the dimensions of the involved representations and inter-
link distances increase. In a strong coupling (small β ) expansion truncated at O(β kNt) one has r≤ k
and the additional restriction |R1|+ · · ·+ |Rr| < k with |R| ≡ p + q for a given representation R

with Dynkin labels [p,q].

5. A toy model – mean field vs. Monte-Carlo

We consider the SU(3) model [3, 4]

S = λ1 ∑
〈xxxyyy〉

(
χ10(Pxxx)χ01(Pyyy)+c.c.

)
+λ4 ∑

〈xxxyyy〉

(
χ10(Pxxx)χ20(Pyyy)+χ20(Pxxx)χ10(Pyyy)+c.c.

)
. (5.1)

A mean field approximation can be applied to approximately determine the associated phase
diagram. We use the following ansatz for the distribution p of the field P ,

p[P]→ pmf[P]≡∏
xxx

pxxx(Pxxx) with pxxx(Pxxx) =

{
pe(Pxxx) : sgn(xxx) = 1

po(Pxxx) : sgn(xxx) =−1
. (5.2)

The resulting phase diagram is displayed in Fig. 1 (left panel).
A straightforward Monte-Carlo simulation on an 83-lattice with a Metropolis algorithm using

our jenLaTT package leads to a phase diagram (Fig. 1, right panel) similar to the one obtained
by the mean field analysis. This agreement is due to the presence of a tri-critical point implying
an upper critical dimension of three. In summary, the full phase structure consists of a symmetric
phase (in the center of each panel of Fig. 1), a ferromagnetic phase (upper left), an anti-center
phase (lower left) and an antiferromagnetic (lower right) phase. The anti-center phase is related to
the ‘skewed’ phase of [5].
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Figure 1: Phase diagrams obtained by mean field analysis (left) and Monte-Carlo simulation (right).

6. Algorithms for first and second order transitions

The simulations for the microscopic YM theory were done using standard heat bath algorithms. For
the effective models we employed standard Metropolis updates to find the phase diagram. In the
vicinity of phase transitions we made use of the following specially designed update scheme.

For first order transitions we used a multicanonical algorithm [6] improving the transition rate
near critical points. For larger lattices the distribution ρ of the order parameter (denoted `) was
predicted using the scaling relation

logρ(`,V )≈ A(`)+C(`)V . (6.1)

For second order phase transitions algorithms of Wolff or Swendsen-Wang type lead to strong
suppression of the dynamical critical exponent. These algorithms are useful for systems with invo-
lutory global symmetries, where the local application of such symmetries leads to ergodic behavior
of the system. For our system there is no ergodic symmetry. So we had to modify the well-known
Wolff cluster algorithm [7] as follows:

1. Choose a random number NM between 0 and V = N3.

2. Do NM standard Metropolis sweeps at randomly drawn lattice points.

3. For a suitable fixed number Ncl repeat the steps for building a cluster by using the complex
conjugation symmetry and its Z3-symmetric equivalents.

4. Do V −NM additional Metropolis sweeps, again at randomly chosen lattice sites.

7. Critical exponents for the antiferromagnetic SSSUUU(((333))) model

For the model (5.1) with λ4 = 0 we observe a second order transition between symmetric and
antiferromagnetic phase. Critical exponents ν and γ may be introduced in terms of the relations

χ(λ1,crit) ∝ Nγ/ν ,
∂U(N,λ1)

∂λ1

∣∣∣∣
λ1=λ1,crit

∝ N1/ν with U = 1−
〈
M4
〉

3〈M2〉2 , χ = N3 〈M2〉 . (7.1)

A Monte-Carlo simulation with our modified Wolff cluster algorithm leads to the following critical
exponents in comparison to the Z3 Potts values:

4
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exponent Z3 Potts [8] minimal Polyakov
ν 0.664(4) 0.68(2)
γ/ν 1.973(9) 1.96(2)

As the exponents coincide (up to statistical errors) the SU(3) model is indeed in the same univer-
sality class as the Z3 Potts model (the XY universality class).

8. Inverse Monte-Carlo – the basics

The inverse Monte-Carlo (IMC) method as designed in [9] allows to determine (effective) actions
from given configurations. In our case, these are Polyakov loops obtained from gauge configura-
tions generated with the Wilson action. Via IMC we want to determine the couplings of truncated
effective actions which (ideally) would give rise to the same distribution of Polyakov loop config-
urations.

The IMC procedure is based on an ansatz for the effective action of the type Seff = ∑i λiSi.
Translational invariance of the reduced Haar measure leads to Schwinger-Dyson equations (SDE),
see below. They constitute an overdetermined linear system for the effective couplings λi which
may be solved by least-square methods. As a further technical input we require a suitable normal-
ization procedure to make sure that individual equations are appropriately weighted [10].

9. Geometric SDE from invariant group integrals

Translational invariance of the Haar measure implies that∫
dµHaar(g)(La f )(g) = 0 for f ∈ L2(G) (9.1)

with La being the left derivative on the group. Choosing f = FLaχp with a class function F and a
fundamental character χp [11] one obtains

La(FLa
χp) = FLLL2

χp +(LaF)(La
χp), (9.2)

and (9.1) reduces to

0 =
∫

dµHaar

(
FLLL2

χp +∑
q

(Laχp)
∂F
∂ χq

(La
χq)

)
. (9.3)

Making use of LLL2
χµ =−cµ χµ and of

(Laχµ)(La
χν) =

1
2
(cµ + cν)χµ χν −

1
2 ∑

λ

Cλ
µνcλ χλ (9.4)

with Casimir values cµ and Clebsch-Gordan coefficients Cλ
µν the equation can be specialized to the

case of SU(3). For a suitable function F , the SDE finally become

0 =
〈
−16

3
PzzzSi,Pxxx +(4P∗

zzz −
4
3
P2

zzz )Si,Pxxx,Pzzz +(6− 2
3
|Pzzz|2)Si,Pxxx,P∗

zzz

〉
−∑

j
λ j

〈
(4P∗

zzz −
4
3
P2

zzz )Si,PxxxS j,Pzzz +(6− 2
3
|Pzzz|2)Si,PxxxS j,P∗

zzz

〉
.

(9.5)
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10. Algebraic SDE

For SU(3) (generalizations for SU(N) are possible [11]) we have the identity∫
Ω

dP dP∗
∂P f = 0 (10.1)

which holds for any function f vanishing on ∂Ω. Choosing

f (P,P∗) = J3g(P,P∗), gxxx =
∂h

∂P∗
xxx

exp(−S), h = Si (10.2)

we obtain the ‘algebraic SDE’

0 =
〈

3
2

∂J2
zzz

∂Pzzz
Si,P∗

xxx
+ J2

zzz Si,P∗
xxx ,Pzzz

〉
−∑

j
λ j
〈
J2

zzz Si,P∗
xxx
S j,Pzzz

〉
. (10.3)

11. IMC results

We have simulated the underlying YM the-

β
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Figure 2: Results obtained from algebraic and geomet-
ric SD equations compared to YM results.

ory with heat bath methods on different lat-
tice sizes near the critical coupling. The cor-
responding couplings for the effective mod-
els were then determined via IMC [10]. The
IMC codes were checked by simulating ef-
fective theories with given input couplings
which were consistently reproduced by the
IMC procedure. In these tests the algebraic
and geometric Ward identities led to compa-
rable results, limited only by the statistical ac-
curacy.

We compared the Polyakov loop arising
from simulations of full YM theory and from
effective actions based on both geometric and
algebraic SDE (on a 163×4-lattice). We found that the algebraic identities outperformed the geo-
metric ones in reproducing the YM critical behavior, in particular the critical coupling (Fig. 2).

Simulations with algebraic SDE on a 163×4-lattice allowed to determine up to 11 effective
couplings as displayed in Fig. 3 (left panel). The dominant terms in the effective actions are

S1 = ∑
〈xxxyyy〉

(χ10(Pxxx)χ01(Pyyy)+ c.c.), S3 = ∑
〈xxxyyy〉

χ11(Pxxx)χ11(Pyyy), S5 = ∑
xxx

χ11(Pxxx), (11.1)

i.e. two NN hopping terms and one single-site (‘potential’) term.
Finally we have extended the IMC procedure to deal with NN and next-to-NN terms up to order

O(β 3Nt) in the strong coupling expansion. This results in an unstable behavior in the rendering
of observables which may be traced to the discontinuities associated with the first order phase
transition (Fig. 3, right panel).

6
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Figure 3: Couplings obtained for NN interactions up to O(β 3Nt) (left) and comparison of higher order
(next-to-NN) effective theories (right).

12. Conclusions

SU(3) Polyakov loop models have a surprisingly rich phase structure when the effective couplings
are allowed to vary unrestrictedly. Upon comparing critical exponents for the second-order antifer-
romagnetic phase transition we have seen that the SU(3) Polyakov loop model is in the same uni-
versality class as the Z3 Potts model. The near-perfect agreement between mean-field and Monte-
Carlo results is due to the fact that the model has a d = 3 tricritical point. Matching the Polyakov
loop models to SU(3) YM theory via IMC leads to stable results only for small lattices and a low
number of couplings. Relaxing these restrictions leads to instabilities obscuring, in particular, the
location of critical couplings. This behavior is due to the first order nature of the phase transition
in lattice gluodynamics. Results for SU(2) YM theory [12], on the other hand, show that IMC is
applicable for systems with second order transitions and leads to stable results.
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