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1. Introduction

Weak ∆S = 1 decays of hadrons can be described in the framework of the Standard Model by
an effective Hamiltonian He f f obtained by integrating out the degrees of freedom associated with
heavy quarks and gauge bosons [1, 2, 3, 4, 5]. It governs interesting aspects of kaon physics; in
particular the direct CP violation parameter ε ′/ε and the ∆I = 1/2 rule. The effective Hamiltonian
has the form

He f f =
GF√

2
∑

i

Ci(µ,g,e)Qi(µ,g,e) (1.1)

where Ci(µ,g,e) denotes the Wilson coefficients, the Qi(µ,g,e)’s are a basis of renormalized 4-
fermion operators contributing to the effective Hamiltonian, µ is the scale, g the strong coupling
and e the EM coupling. We take the basis operators Qi to be the ones specified by Buras et al.
in Section 2 of Ref.[1]. There are 10 of these and their origins are as follows: Q1−2 are from
W -exchange, Q3−6 are from QCD penguin diagrams while Q7−10 are from electroweak penguin
diagrams.

The energy scale in kaon decays is about 500 MeV, so the hadronic matrix elements of He f f

are dominated by the strong interaction and must be calculated non-perturbatively. The lattice
approach is the only possibility for doing this at present, and is currently being used; see Ref.’s
[6, 7, 8, 9]. The procedure for calculating the matrix elements from the lattice can be summarized as
follows. First one calculates the matrix elements of the appropriate lattice operators Qlatt

j (a). Next
one matches to the continuum operators at some scale q∗ ≈ 1/a in a continuum renormalization
scheme, e.g., Naive Dimensional Regularization (NDR):

Qi(q
∗) = zi j(q

∗a)Qlatt
j (a) (1.2)

The matching factors zi j(q∗a) can be calculated in perturbation theory [12]; they involve log(q∗a)

so the continuum scale q∗ must be close to 1/a to avoid large logs. Finally, one uses RG evolution
to run the continuum operators Qi(µ) from the scale µ = q∗ down to µ = mc (the charm quark
mass) where they can be combined with the known Wilson coefficients1 at the scale µ = mc to get
the matrix elements of He f f .2

The RG evolution operator required in the final step above has been calculated up to next-
to-leading order (NLO) by Buras et al. [1]. However, the expression obtained there contains
singularities in the case where there are 3 active quark flavors. Therefore it cannot be used for
extracting the matrix elements from lattice QCD simulations with N f = 2 + 1 dynamical fermion
flavors. This is a major problem since unquenched lattice simulations with 2+1 sea quark flavors
are currently underway with a variety of fermion discretizations (see, e.g., [10] and references
therein) and will be addressing kaon physics such as ε ′/ε and the ∆I = 1/2 rule in the coming
future. It is therefore imperative to deal with the singularity problem in the NLO expression for
the RG evolution operator. The full RG evolution operator is known to be singularity-free, so the
singularity in the NLO expression in the 3 flavor case should be a removable artifact. In this paper

1The Wilson coefficients are all known up to NLO in peturbation theory [2].
2Note that He f f itself is independent of the scale, so we can combine the operators and Wilson coefficients at any

chosen scale to determine its matrix elements.
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we review the solution to this problem given recently in Ref.[11]. The singularity is eradicated by
a method of analytic continuation to obtain the correct finite NLO expression for the RG operator
in the 3 flavor case. Furthermore, we trace the origin of the singularities in the work of Buras et
al. to a breakdown of their approach in the 3 flavor case, and show how it can be rectified so that
singularities are absent from the beginning.

2. Review of RG evolution and the singularity problem at NLO

The running of the Qi(µ)’s and Ci(µ)’s is governed by the RG evolution equation resulting
from d

dµ He f f = 0. Combining the operators and Wilson coefficients into vectors~Q and ~C respec-

tively, the evolution is given by 10×10 matrices acting on these vectors. The evolution of ~Q(µ) is
obviously inverse to that of ~C(µ) so it suffices to determine the latter, which is what we do in the
following. The running of the EM coupling e is negligible over the range of scales that are relevant
for the present considerations, so we treat it as constant in the following, as was done in Ref.[1].

The RG equation for ~C(µ) is

[

µ
∂

∂ µ
+β (g,e)

∂
∂g

]

~C = γT (g,e)~C (2.1)

where γ(g,e) is the 10× 10 anomalous dimension matrix (given below) and β (g,e) is the beta-
function, given by

β (g,e) = −β0
g3

16π2 −β1
g5

(16π2)2 −β1e
e2g3

(16π2)2 + . . . (2.2)

with

β0 = 11− 2
3

f , β1 = 102− 38
3

f , β1e = −8
9
(u+

d
4
) (2.3)

where u and d denote the number of active u− and d−type flavors, respectively, and f = u + d
(= N f ) is the total number of active flavors.

From the RG equation (2.1) the running of ~C(µ) is found to be given by

~C(m1) = U(m1,m2)~C(m2) (2.4)

where the evolution matrix is

U(m1,m2) = Tg exp
(

∫ g(m1)

g(m2)
dg′

γT (g′,e)
β (g′,e)

)

(2.5)

with the dependence g = g(m) specified by mdg
dm = β (g,e). Here Tg denotes g−ordering; it is

required since generally [γ(g1),γ(g2)] 6= 0 for g1 6= g2.
To evaluate U(m1,m2) we need to know the anomalous dimension matrix γ(g,e). It is de-

termined from the renormalization constant matrix relating the bare and renormalized operators:
Q(0)

i = Zi j(µ)Q j(µ) and

γ(g,e) = Z−1 d
d log µ

Z (2.6)
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This depends on g and e through αs = g2

4π and α = e2

4π , and has been calculated perturbatively up to 2
loops in the NDR scheme, whereby the matrices in the following expansions have been determined
(see [1] and the references therein):

γ(g,e) = γs(g
2)+

α
4π

Γ(g2)+O(α2) (2.7)

where the pure QCD part is

γs(g
2) =

αs

4π
γ(0)

s +
α2

s

(4π)2 γ(1)
s + . . . (2.8)

and the leading order QED correction in (2.7) is specified by

Γ(g2) = γ (0)
e +

αs

4π
γ(1)

se + . . . (2.9)

For later use we note that

γ(g,e)
β (g,e)

= − 4π
β0g3





αsγ
(0)
s + α2

s
4π (γ(1)

s − β1
β0

γ(0)
s )

+ α
(

γ(0)
e + αs

4π (γ(1)
se − β1

β0
γ(0)

e − β1e
β0

γ(0)
s )+O(α2

s )
)

+O(α2)



 (2.10)

= −γ(0)
s

β0g
+O(g)+O(α) (2.11)

The expansion of the evolution operator in the EM coupling takes the form

U(m1,m2) = Us(m1,m2)+
α
4π

R(m1,m2)+O(α2) (2.12)

where the pure QCD evolution is

Us(m1,m2) = Tg exp
(

∫ g(m1)

g(m2)
dg′

γT
s (g′)

βs(g′)

)

(2.13)

and the leading additional contribution to the QCD evolution in the presence of EM interactions in
(2.12) is given by (see [1])

R(m1,m2) =
∫ g(m1)

g(m2)
dg′

Us(m1,m′)ΓT (g′)Us(m′,m2)

βs(g′)
(2.14)

where g′ = g′(m′). The EM contribution to the beta-function has been ignored in (2.13)–(2.14):
βs(g) = β (g,0) so the expressions are valid when the β1e term in (2.2) is dropped, which is a
justifiable approximation made in Ref.[1]. However, the generalization of the NLO expressions for
the evolution matrix to the case where the β1e term is not dropped is straightforward: In light of
(2.10) it can be obtained simply by replacing γ (1)

se → γ (1)
se − β1e

β0
γ(0)

s in the relevant expressions [11].
In the remainder of this paper we restrict our attention to the pure QCD evolution Us(m1,m2)

which is where the aforementioned singularity problem arises at NLO in the 3 flavor case. Once
the singularity is eradicated, the new finite expression needs to be used in the NLO evaluation of
(2.14) for R(m1,m2). We omit that part here, referring to Ref.[11] for the details and result.
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We begin by recalling the leading logarithmic approximation to Us(m1,m2): it is obtained by

keeping only the leading contribution to γT
s (g′)

βs(g′)
in the integrand in (2.13), which is shown in (2.11).

It is useful to diagonalize γ (0)T
s :

γ(0)
D = V−1γ(0)T

s V diagonal matrix (2.15)

then the leading logarithmic approximation is found to be

U (0)
s (m1,m2) = V

(αs(m2)

αs(m1)

)γ(0)
D /2β0

V−1 (2.16)

The NLO contribution to the evolution matrix can now be found starting from the ansatz

Us(m1,m2) =
(

1+
αs(m1)

4π
J
)

U (0)
s (m1,m2)

(

1− αs(m2)

4π
J
)

(2.17)

and using the RG equation for Us(m1,m2) (given by (2.1) with β (g,e) and γ(g,e) replaced by βs(g)

and γs(g), respectively) to derive an equation for J. From solving this equation at lowest order in
αs Buras et al. find [1, 3]

J = V SV−1 (2.18)

where

Si j = δi jγ
(0)
i

β1

2β 2
0

− Gi j

2β0(1+ai −a j)
(2.19)

with

G = V−1γ(1)
s V , ai = i’th diagonal element of γ (0)

D /2β0 (2.20)

From (2.19) we see that the resulting NLO expression for the evolution matrix has a singularity if
1+ai −a j = 0. As mentioned in [1], this happens for (i, j) = (8,7) when there are 3 active quark
flavors ( f = 3).

3. Solution of the singularity problem via analytic continuation

The expression (2.17) can be written up to NLO as

UNLO
s (m1,m2) = U (0)

s (m1,m2)+
1

4π
VA(m1,m2)V

−1 (3.1)

where

VA(m1,m2)V
−1 = αs(m1)JU (0)

s (m1,m2)−αs(m2)U
(0)
s (m1,m2)J . (3.2)

Inserting the expression (2.16) for U (0)
s (m1,m2) leads to

Ai j(m1,m2) = Si j

[

α1

(α2

α1

)a j

−α2

(α2

α1

)ai
]

(3.3)
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where αk ≡ αs(mk) for k = 1,2. In the singular case ( f = 3, i = 8, j = 7) we now regularize Si j by
replacing

a j → a j + ε (3.4)

in (2.19). The regularized quantity then becomes Si j =
(

Gi j

2β0

)

1
ε . Inserting this into (3.3), and

making the same regularization (3.4) there, we find

Ai j(m1,m2) =
( Gi j

2β0

)1
ε

[

α1

(α2

α1

)a j+ε
−α2

(α2

α1

)ai
]

=
( Gi j

2β0

)1
ε

α2

(α2

α1

)ai
[

ε log
(α2

α1

)

+O(ε2)
]

ε→0
=

( Gi j

2β0

)

α2

(α2

α1

)ai

log
(α2

α1

)

(3.5)

Thus a finite expression is obtained in the limit where the regularization is lifted. Substituting this
into (3.1) we get a finite NLO expression for the evolution operator. This solution of the singularity
problem clearly amounts to analytic continuation of the evolution operator (regarded as a function
of the matrix γ (0)

s ).

4. Understanding the “singularity” from first principles

In the following it is convenient to use the notation Us(g1,g2) rather than Us(m1,m2); this is
justified since the dependence on m1,m2 enters exclusively through g(m1),g(m2).

By general arguments the full evolution operator (for pure QCD) can be written as

Us(g1,g2) =
(

1+
g2

1

16π2 J(g1)
)

U (0)
s (g1,g2)

(

1+
g2

2

16π2 J(g2)
)−1

(4.1)

Using the RG equation

d
dg

Us(g,g0) =
γT

s (g)

βs(g)
Us(g,g0) (4.2)

to derive an equation for J(g) at leading order, one finds different equations in the “singular” case
1+ai −a j = 0 and “non-singular” case [11].

In the non-singular case, taking J(g) = J +O(g) leads to a consistent solution for the constant
matrix J. This is the solution found by Buras et al. that we reviewed in §2. On the other hand, in the
singular case, the ansatz J(g) = J +O(g) does not admit a consistent solution. In fact, it turns out
that Si j(g) = (V−1J(g)V )i j must diverge for g → 0. Specifically, in the singular case 1+ai−a j = 0
we found in Ref.[11] that the leading order equation for Si j(g) is as follows:

β0 g
d
dg

Si j(g) = −Gi j (4.3)

The solution is

Si j(g) = −Gi j

β0
log(g)+ ci j = − Gi j

2β0
log(αs)+ c′i j (4.4)
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where ci j is an undetermined integration constant and c′i j = ci j − Gi j

2β0
log(4π). Thus Si j(g) diverges

for g→ 0 as claimed. Note however that g2Si j(g) vanishes for g→ 0, implying that g2J(g) vanishes

in this limit as it should in order for (4.1) to reduce to U (0)
s (m1,m2) in the small g limit. We also

note that Si j(g) is actually a function of g2 (or αs) as it should be. Finally, our previous expression
(3.5) for Ai j(m1,m2) is readily reproduced from (4.4) (see [11]),3 so the first principles solution
of the singularity problem presented here agrees as it should with the finite NLO result for the
evolution operator obtained via analytic continuation in the previous section.

5. Conclusions

We have eradicated the singularities in the original solution of Buras et al. to get a finite
expression for the RG evolution matrix at NLO in the 3 flavor case. This is essential for being able
to evaluate the matrix elements of the ∆S = 1 effective Hamiltonian from the lattice with 2+1 sea
quark flavors.

The breakdown of the ansatz J(g) = J + O(g) in Buras et al.’s approach, and the rectifica-
tion discussed here, illustrate some general subtleties to bear in mind when evaluating evolution
operators in general.
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