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1. Introduction

Lattice QCD continues to forge links between the first principles of quantum chromodynamics
and the experimental measurement of hadronic observables. For example, when coupled with the
experimentally measured indirectCP-violation ε parameter, the kaon bag parameterBK helps to
constrain the apex of the unitarity triangle.

The kaon B-parameter is an ideal setting for lattice QCD to provide input to experimental
measurements that otherwise would not be able to constrain the Standard Model. Although mea-
surements of the indirectε parameter have been made since the 1960’s, the connection between
this parameter and the fundamental parameters of the CKM quark mixing matrix requires calcula-
tion of a weak matrix element between hadronic states proportional toBK . Such matrix elements
strongly depend on low-energy nonperturbative QCD effects, and so are inaccessible to perturba-
tion theory. Although phenomenological models estimateBK at the 10% level, a first-principles
QCD calculation on the lattice should be able to do much better.

For a broad class of observables such as the weak matrix elements (including theε parameter),
it is necessary to use lattice simulations that retain chiral symmetry, which is broken by the most
economical lattice actions. The domain-wall fermion lattices produced by the RBC and UKQCD
collaborations are ideal for the study of weak matrix elements like the kaon mixing matrix ele-
ment (proportional to the kaon B-parameterBK). Several publications have previously addressed
calculations ofBK using domain wall fermion lattices[1, 2, 3].

Once a calculation is made using lattice QCD it is important that the systematic errors are
correctly calculated or estimated, in order to present a phenomenologically relevant number to the
wider community. Lattice calculations are made on a femto-torus, with a finite lattice spacing and
with quarks that are heavier than their real-world counterparts. Such limitations introduce system-
atic errors: finite volume effects, discretization errors and chiral extrapolation errors, respectively.
Systematic errors also arise from the process of renormalization. It is therefore important that lat-
tice calculations are made with good control over systematic and statistical errors. Domain-wall
fermions are attractive in this sense because they have exact vector symmetry and mildly broken
chiral symmetry. This leads toO(a) improvement of the discretisation errors and a dramatic sim-
plification of the renormalization procedure due to the fact that chiral symmetry is approximately
satisfied [2].

In this proceedings, we will describe a calculation at inverse lattice-spacinga−1 = 1.73(3) GeV
to determineBK using-domain wall fermions. The calculation is also described in [4].

In Section2 we describe the simulation and measurement parameters, and give the approxi-
mate range of pseudoscalar masses in our calculation. We discuss the setting of the lattice scale
and present the values for the physical light and strange quark masses. These were calculated in
[5] and [6] on the 163 and 243 volumes respectively.

In Section3 we present the numerical results from the calculation of the bare pseudoscalar
B-parameter,BP.

We discuss the extrapolation of the lattice results to the physical point in Section4. We present
the extrapolations of each volume separately, reflecting the chronological order. In each case we
compare the lattice data to functional forms from next-to-leading order (NLO) chiral perturbation
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theory (XPT). For the larger volume we also consider next-to-NLO (NNLO) forms. In both cases
we examine whether NLO XPT is applicable at the kaon scale.

In Section5 we discuss the systematic errors in our calculation and finally present a renormal-
ized value forBMS

K (2 GeV).

2. Lattices

We simulated domain-wall fermions on lattice volumes of 163× 32 and 243× 64 with the
Iwasaki gauge action and bare gauge couplingβ = 2.13. The extent of the fifth dimension was
Ls = 16 and the domain wall height was fixed toaM5 = 1.8. We have three ensembles on the
small volume with input light quark massaml ∈ {0.01,0.02,0.03} and input strange quark mass
ams = 0.04, approximately its physical value; these ensembles are more fully described in [5]. On
the larger volume, we use bare quark massesams = 0.04 andaml ∈ {0.005,0.01}. Table1 shows
the approximate unitary pseudoscalar masses in physical units for the two ensembles. We select
for analysis configurations separated by 20 MD time units on the 163 and 40 MD time units on the
243 simulations. This means that we measure weak matrix elements for each light sea quark mass
on 150 (small-volume) or 90 (large-volume) lattices. We bin the data using up to 80 trajectories
per bin to reduce the correlations between our samples. This leaves∼ 50 measurements for the
standard jackknife analysis.

163×32 243×64
aml ams Mπ MK Mπ MK

0.005 0.04 – – 330 580
0.01 0.04 420 610 420 600
0.02 0.04 560 670 – –
0.03 0.04 670 710 – –

Table 1: Approximate physical unitary pseudoscalar masses (in MeV) on the three 163 and two 243 ensem-
bles. Calculated using lattice spacinga−1 = 1.73 GeV. The two sea quarks areml andms.

Each data set includes two- and three-point correlators from the all nondegenerate combi-
nations of valence quark massesamx,y ∈ {0.01,0.02,0.03,0.04,0.05} on the small volume and
amx,y ∈ {0.001,0.005,0.01,0.02,0.03,0.04} on the large volume. Zero-momentum kaon states are
created and annihilated using Coulomb-gauge–fixed wall sources located att = 5 (both volumes)
andt = 27 (small) ort = 59 (large) with the operator inserted at all intervening points, such that
the entire volume is sampled. The available time-length on the lattice is doubled by summing the
propagators found using periodic and antiperiodic boundary conditions at thet-boundary.

The extent of chiral symmetry breaking in domain-wall fermion simulations is quantified by
the residual mass,amres, which is an additive quark mass renormalization. The residual mass is
determined from the pseudoscalar correlator having a sink at the midpoint of the fifth dimension,
which agrees with the (negative) quark mass at which the pseudoscalar mass extrapolates to zero.
We findamres= 0.00315(2)≈ 5 MeV, which is quite small compared to the strange quark mass.
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We use data from the large volume to set the scale. We use the mass of theΩ− baryon, linearly
extrapolated toml = (mu + md)/2, andMK andMπ treated in SU(2)×SU(2) chiral perturbation
theory to determinea−1 = 1.73(3) GeV [6]. For the physical quark masses we find

amphys
l = 0.001300(58) and amphys

s = 0.0375(16). (2.1)

The physical strange quark mass turns out to miss our sea input(0.04+amres) = 0.0432 by around
15%; since the kaon bag parameter is quite sensitive to the valence strange mass, we will need to
interpolate betweenamy = 0.03 and 0.04 determine the value at the physical point.

3. Numerical Results

The kaon B-parameter is defined by the ratio of the kaon-mixing matrix element to its vacuum
saturation value:

BK =
〈K0|O∆S=2

LL |K0〉
8
3 f 2

KM2
K

, (3.1)

whereMK is the mass of the neutral kaon,fK is the decay constant of the kaon (given by its coupling
to the axial current), andO∆S=2

LL = (s(1− γ5)γµd)(s(1− γ5)γµd) is a four-quark operator coupling
to left-handed quarks that changes strangeness by 2.

We determine the pseudoscalar B-parameter by a clever ratio of pseudoscalar-axial wall-point
correlators with the figure-eight diagram sandwichingO∆S=2

LL between operators to create a kaon
and annihilate an anti-kaon:

Bbare
P =

2V
8
3

C POP
wpw (tsrc, t, tsnk)

C PA4
wp (tsrc, t)C A4P

pw (t, tsnk)
, (3.2)

whereV is volume, and theC ’s are correlators with superscripts denoting the source, insertion (for
three-point correlators) and sink operators (one ofP pseudoscalar,A4 time-component axial or the
O∆S=2

VV+AA mixing operator in this case) and subscripts denoting source, insertion and sink shapes (p
point orw wall). For each three-point correlator, the point insertion is summed over all space in its
timeslice. This formulation has advantages over a more naive determination of the matrix element
alone, since it avoids introduction of noisy wall-wall correlators and the axial renormalizationZA.

Thanks to the large time extent of our lattices and the use of periodic-plus-antiperiodic propa-
gators, the plateau forBK is very long. We fit to a constant over the ranget ∈ [12,22] (small lattices)
andt ∈ [12,52] (large). A sample of data from each volume can be seen in Figure1. The fitted
values of bareBP for all combinations of quark masses on both volumes are given in Table2. Note
that the length of the plateau on the 243 ensembles is long enough that correlated fits are unreliable
so uncorrelated fits are used.

4. Chiral Extrapolations

Since the cost of making calculations directly at the physical up and down quark masses is
beyond the present capabilities of computers devoted to lattice QCD, it is necessary to extrapolate
from higher masses. The most commonly used analytical tool for this purpose is chiral perturbation
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Figure 1: Above:An example of theBP ratio on the 163 aml = 0.01 ensemble withamx = amy = 0.01;
correlatedχ2/dof = 1.37 for this fit. Below: Plateau ofBP for valence masses equal to sea masses on 243

ams = 0.04,aml = 0.01, using an uncorrelated fit. Fitting range, value and uncertainty are indicated by the
red band.

theory, a low-energy effective field theory which employs the chiral symmetry of QCD to make
predictions about the dependence of observables on quark masses and momenta. However, since
chiral symmetry is broken by the quark masses, one expects XPT to work well only at light masses.
We need to determine whether it works well enough at the kaon mass, to be useful for extrapolating
BK .

Since domain-wall fermions have good chiral symmetry, we can use the next-to-leading order
SU(3)×SU(3) partially quenched (PQ) 2+1-flavor continuum form given by [7]:

BK

B0
= 1+

1

48π2 f 2M2
K

[
Iconn+ Idisc+bM4

K +c(M2
X−M2

Y)2 +dM2
K(2M2

D +M2
S)
]
, (4.1)

wheremQ is the mass of the pseudoscalar meson with the indicated composition, and theI ’s are
known chiral logs. The function itself has six free parameters:µ and f0 (the usual leading order
dimensionful constants from chiral perturbation theory),B0 (the chiral limit of the bag parameter),
and dimensionless constants arising at NLOb, c andd. We fix the values ofµ and f0 to the values
obtained in [6]: B0 = 2.35(16) and f0 = 0.0541(40) (large volume). To use the continuum form
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BP

163×32 243×64
amy amx aml = 0.01 aml = 0.02 aml = 0.03 aml = 0.005 aml = 0.01

0.001 0.001 – – – 0.470(7) 0.470(5)
0.005 0.001 – – – 0.491(6) 0.495(4)
0.005 0.005 – – – 0.507(4) 0.511(3)
0.01 0.001 – – – 0.513(5) 0.521(4)
0.01 0.005 – – – 0.526(4) 0.5307(28)
0.01 0.01 0.546(8) 0.539(8) 0.527(7) 0.542(3) 0.5456(25)
0.02 0.001 – – – 0.549(5) 0.559(4)
0.02 0.005 – – – 0.558(3) 0.5626(26)
0.02 0.01 0.577(6) 0.569(6) 0.556(6) 0.5697(26) 0.5729(23)
0.02 0.02 0.598(5) 0.589(5) 0.580(5) 0.5915(24) 0.5941(21)
0.03 0.001 – – – 0.577(5) 0.588(5)
0.03 0.005 – – – 0.585(3) 0.5883(28)
0.03 0.01 0.600(6) 0.594(6) 0.579(5) 0.5937(25) 0.5961(23)
0.03 0.02 0.617(4) 0.609(5) 0.600(4) 0.6111(23) 0.6132(20)
0.03 0.03 0.633(4) 0.626(4) 0.618(3) 0.6274(22) 0.6291(18)
0.04 0.001 – – – 0.601(7) 0.612(7)
0.04 0.005 – – – 0.607(4) 0.610(3)
0.04 0.01 0.620(5) 0.616(6) 0.599(5) 0.6143(27) 0.6163(25)
0.04 0.02 0.633(4) 0.627(4) 0.618(4) 0.6286(23) 0.6304(20)
0.04 0.03 0.647(4) 0.641(4) 0.634(3) 0.6423(21) 0.6438(17)
0.04 0.04 0.659(3) 0.655(3) 0.648(3) 0.6553(20) 0.6567(16)
0.05 0.01 0.636(5) 0.634(6) 0.616(4) – –
0.05 0.02 0.648(4) 0.643(4) 0.634(3) – –
0.05 0.03 0.660(3) 0.655(3) 0.648(3) – –
0.05 0.04 0.671(3) 0.667(3) 0.661(3) – –
0.05 0.05 0.682(3) 0.679(3) 0.673(3) – –

Table 2: Pseudoscalar bag parameter with valence quark massesamx,y and sea quark massesaml ,s. For all
cases,ams = 0.04.

with domain-wall fermions, we shift each quark mass bymres. The resulting chiral form should be
accurate up toO(a) uncertainties inmres, which are not included, although they could be modeled
by NLO terms in the chiral expansion. Using the calculated fit parameters and the physical quark
masses we can extrapolate to the physical pointmx = ml = mphys

l , my = ms = mphys
s to yield the

unrenormalizedBK . In the following section we discuss the extrapolations in chronological order;
first the small volume and then the large volume.

4.1 163×32Extrapolation

We extrapolate to the physical point using the SU(3) form Eq.4.1. We do not expect that all
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of the data points lie within the region of validity of XPT, so we apply a cut in the valence quark
masses such that(mx + my)/2≤ mcut and also try the fit with two and three ensembles included.
Figure2 shows the variation inBK at the physical point when these cuts are applied. Changing the
number of ensembles included in the fit does not alter the value, but increases the error bar. The
value seems to show insensitivity belowmcut = 0.03. Assuming we are in the chiral regime, this is
exactly what one might expect: points above a certain mass threshold are not well described by the
NLO XPT function and when they are omitted the form fits the data. Figure3 shows an example
of the NLO SU(3) fit on theaml = 0.01 ensemble. The curves fit the data that survives the cut
reasonably well, although they miss the lightest point which may be an indication that we are not
yet in the chiral regime.

0 0.01 0.02 0.03 0.04 0.05 0.06
mcut

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

B K

msea<=0.02
msea<=0.03

BK=0.605(9)

Figure 2: Variation ofBK at the physical pointmx = ml = mphys
l , my = ms = mphys

s with the cut in valence
quark massmcut = (mx +my)/2. The blue (circle) and red (square) points are obtained from fits to three and
two ensembles respectively.

Given the insensitivity to the valence and sea quark mass cuts we quote a value from the fit
usingmcut = 0.03:

BNLO
K = 0.605(9). (4.2)

However, a linear fit to the three unitary points gives a comparable value at the physical point:

Blinear
K = 0.611(8). (4.3)

The fact that the chiral and linear extrapolations agree so well, Figure4, indicates that the NLO fit
is not working correctly. We know that in the chiral limit theBP XPT fitform has a chiral logarithm
in Mπ of size [8]

1
2

M2
π

(4π f )2 log
M2

π

Λ2
χ

, (4.4)

which will make a true chiral extrapolation differ from a linear extrapolation, especially given our
data is quite far from the physical point. There will be other log terms inMK andMη but these
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Figure 3: Continuum NLO SU(3) XPT fit applyingmcut = 0.03. The coloured bands correspond to different
values for the valence quarkmx and the grey line is the unitary curve. The fit is to filled points only. The
black diamond is the value forBK at the physical point.

will not affect the deviation from linear so much as they don’t become massless in the light quark
chiral limit. If we knew that we were in a region where NLO SU(3) XPT could be reasonably

0.001 0.01
mx

0.55

0.6

0.65

B
P

NLO fit
unitary B

P

BK mH l
phys

,ms
physL

linear fit

mx=ml
phys

Figure 4: The NLO SU(3) XPT fit agrees well with a linear fit to the unitary points. The black line is the
form obtained from fitting all three ensembles to the NLO SU(3) form withmcut = 0.03 and the green line
from a linear fit to the three unitary points.

applied there would be negligible uncertainty in taking the chiral limit using the method outlined
above. However, given the agreement between XPT and the linear fit, coupled with the fact that
SU(3) NLO PQXPT did not fit the pseudoscalar data [5] it would appear that the SU(3) NLO fit
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is simply a smooth interpolating function. We must estimate the error introduced by this unceratin
chiral limit. We do this by appealing to NLO SU(2) XPT where we no longer consider the kaon to
be a Goldstone boson. Appealing to the XPT form for heavy-light mesons we can derive an SU(2)
chiral form in theMK �Mπ limit [ 9]

BK = B0

[
1− M2

π

2(4π f )2 log

(
M2

π

Λ2
χ

)
+c0

M2
π

Λ2
χ

]
. (4.5)

Eq. 4.5 gives an exact description of the non-analyticity inMπ for scalesMπ � MK so it should
provide a good estimate of what happens when we extrapolate into a region that is presently inac-
cessible to us. It should also be stressed that for smallmπ , p�mK the SU(3) form previously used
will tend towards Eq.4.5.

To estimate the chiral extrapolation error we match the linear fit of the unitary points to Eq.4.5
at some matching pointmmin

q . This corresponds to the region where XPT is applicable. By varying
mmin

q we adjust our chiral extrapolation estimate e.g. ifmmin
q = 0 then the linear extrapolation

is correct or ifmmin
q = 0.01 our data lies just outside the region where XPT is applicable. We

calculate the chiral extrapolation error by measuring the deviation between the linear fit and the
matched curve at the physical point, see Figure5. To be maximally pessimistic we pushmmin

q as
high as possible whilst remaining consistent with the data. This corresponds tommin

q = 0.02 and a
chiral extrapolation error of 4%. We therefore quote the unrenormalizedBK in the chiral limit

0 0.01 0.02 0.03 0.04
mq=mx+mres

0.585

0.59

0.595

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

B
P

Im q
,0

.0
4M

unitary
fit, linear

SUH2L match, mq
min

= 0.013

SUH2L match, mq
min

= 0.023

mq
min

= 0.013

2%

mq=ml

phys

mq
min

= 0.023

4%

Figure 5: To estimate the chiral extrapolation error we measure the deviation between a linear fit to the uni-
tary points and an SU(2) curve at the physical point. The error depends on where the matching is performed:
this is where we expect XPT to “turn on”. Usingmmin

q = 0.01 (blue curve) the deviation is≈2% and using
mmin

q = 0.02 (green curve) the deviation is≈4%.

B163

K = 0.605(9)(24), (4.6)

where the first error is statistical and the second is the estimated chiral extrapolation error. XPT
does not appear to be trustworthy at energy scales close to the kaon mass. This calls into question
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the applicability of SU(3)×SU(3) XPT and motivates the use of SU(2)×SU(2) XPT, where we
no longer consider the kaon to be a Goldstone boson. We conclude from this calculation on the
small volume that simulations with lighter quark masses are required to reliably extrapolate to the
physical point. This is addressed in the 243×64 simulation.

4.2 243×64Chiral Extrapolation

Measurements on the large-volume ensembles have dynamical quarks and valence quarks as
light as 1/5 and 1/10 of the dynamical strange, respectively (including the necessary addition of
mres). This should allow for better overlap with the region of validity of NLO PQXPT than on the
small-volume calculation. We begin by attempting to extrapolate the date using the SU(3) from in
Eq. 4.1. As before we employ a valence mass cutmcut = 0.03, a mass cutoff which compromises
with the need to use light masses in XPT and the need to include the physical kaon mass. We
perform an uncorrelated, least-squares fit, giving the result shown in Figure6 and the extrapolated

BK

0.04

0.03

0.02

0.01

0.005

0.001

0.00 0.01 0.02 0.03 0.04
0.40

0.45

0.50

0.55

0.60

0.65

mx
val

B
P

 243
 , ms

sea
� 0.04 , ml

sea
� 0.005

BK

0.04

0.03

0.02

0.01

0.005

0.001

0.00 0.01 0.02 0.03 0.04
0.40

0.45

0.50

0.55

0.60

0.65

mx
val

B
P

 243
 , ms

sea
� 0.04 , ml

sea
� 0.01

Figure 6: Pseudoscalar bag parameter as a function of light valence quark mass (where the chiral limit is at
m= −mres). Each colored band indicates a different strange valence quark mass: brown= 0.001 through
green= 0.04. The black point marks the extrapolation to physicalBK .

valueBNLO
K = 0.556(8). Although we expect the XPT form to work best at low masses, we see in

the figure that the best-fit form does not agree with the data in that region. We therefore conclude
that NLO XPT is probably unsuitable at the kaon mass. It is still useful for determining the low-
energy constantB0, which we extract by fitting to a much more restricted data set,amav ≤ 0.01;
this yieldsB0 = 0.30(3). Without resorting to chiral perturbation theory, we might hope to be able
to simply extrapolate using a linear ansatz including only the unitary points. Of course, due to the
mismatch of the physical strange mass, we need to include also the non-unitaryamy = 0.03 points.
Such a simple fit givesBlinear

K = 0.582(10). However, the linear ansatz is probably not well justified,
since at low light-quark mass, there is a known chiral logarithm.
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Figure 7: As Figure 3, but using a fit form including analytic NNLO terms from chiral perturbation theory.

Another alternative is to attempt to go to higher orders of chiral perturbation theory; if next-
to-leading order is not sufficient at the kaon mass, NNLO might succeed. However, given that
NLO terms appear to be large at the kaon mass, one might expect NNLO terms to also be large.
Unfortunately, such a calculation is very difficult and does not appear in the literature. However,
the analytic terms are known:

BK

B0
= 1+

1

48π2 f 2M2
K

[
Iconn+ Idisc+bM4

K +c(M2
X−M2

Y)2 +dM2
K(2M2

D +M2
S)

+n1M6
K +n2M4

K(2M2
L +M2

S)+n3M2
K(2M2

L +M2
S)2] . (4.7)

The introduction of these three new parametersn allows us to fit the entire range of data, as seen in
Figure7; this givesBNNLO

K = 0.552(10). However, the introduction of only particular known terms
at higher orders may be seen as somewhat arbitrary, and the number of parameters needed nearly
doubles.

The failure of SU(3) fits at valence quark massesmy ≈ms again motivates the use of an SU(2)
form. In contrast to the small volume where wematchedto an SU(2) form we now have data light
enough that we can perform afit using Eq.4.5. We extrapolate the B-parameter to the physical value
of the light quark mass at a fixed value of the strange quark mass. We do not have measurements
at valence quark masses corresponding to the physical strange quark mass, so we perform the
extrapolation with valence strange massesamy ∈ {0.03,0.04}, and then interpolate to the physical
strange mass. We find that a cut in light valence massmcut = 0.01 leads to a good fit, in agreement
with similar considerations for the extrapolations ofMK and fK on the same ensembles [6]. The two
extrapolations formy ∈ {0.03,0.04} are shown in Figure8. Interpolating to the physical strange
mass we find

BSU(2)
K = 0.565(10). (4.8)
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Figure 8: As Figure 6, but using a fit form using NLO SU(2) partially quenched chiral perturbation theory
and treating the strange quark as heavy.
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Figure 9: The partially quenchedSU(2)×SU(2) chiral extrapolation of the 244×64 data withamy = 0.04.
Also shown is the 163×32 unitary data. The two volumes agree and significant deviation from the 163 linear
extrapolation can be seen, indicating chiral curvature.

Figure (9) shows a comparison between the extrapolations of the two volumes.

Comparing the extrapolated values from the linear fit and the SU(2) fit we see that the SU(2)
result is approximately 3% below the linear result. The difference indicates that we are seeing
significant chiral curvature; evidence that we are in a region where XPT can be reliably applied.
The SU(2) fit fits well in the region where light quark mass is less than about 0.013 in lattice units
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and is theoretically sound: we adopt this method for the extrapolation ofBP to the physical point
to quote our best value.

5. Systematic Errors

One systematic error enters due to our use of SU(2) XPT, assuming that the kaon is heavy.
The analysis is applicable wheneverMπ �MK , whether or not the kaon is heavy or light compared
to other scales, and we do not rely on chiral perturbation theory being convergent at kaon masses.
The low-energy constants (LECs) will be strange-mass dependent, and since the kaon is somewhat
lighter than a typical chiral scale, the convergence of the chiral expansion, controlled by these
LECs, may be correspondingly impacted. This will merely reflect the new dynamics that enter at
kaon mass scale, and an reasonable estimate suggests a reduced suppression ofml/ms relative to
NLO may apply to NNLO analytic terms. The NLO correction is of order 6%, so we estimate
NNLO contamination asO(≤ 2%) for our mass cuts.

The 163 data shown in Figure9 is well described by a straight line, and the linear extrapolation
is larger than the 243 SU(2) extrapolation by approximately 6%. We estimate the extrapolation error
as this 6% difference scaled byml/ms for aml = 0.01: 2%. This is an estimate of the size of NNLO
terms.

The input dynamical strange quark mass is 15% larger than the measured physical strange
quark mass. By examining the change in the B-parameter as the light dynamical quark mass is
increased we estimate this to contribute a 1% error.

We can measure the finite volume effects (FVE) by comparing the bareBP values on the
aml = 0.01 ensembles on both volumes. Examining the numbers in Table2 we see that there
are no significant differences beyond statistical errors between the two volumes. Finite volume
XPT suggests that FVE are negligible [11] for all masses and volumes in our simulation except for
amx = 0.001 on theaml = 0.01 ensemble. However, removing this point from the extrapolation has
no significant effect. We estimate the error from FVE from the difference between the B-parameters
on the two volumes: 1%.

We estimate the continuum extrapolation error by appealing to the quenched CP-PACS calcu-
lation, also done using domain wall fermions and the Iwasaki gauge action [12]. This suggests a
scaling error of 3.5% for our slightly coarser lattice spacing and we choose 4% as the most likely
estimate forO(a2) scaling errors. This is in agreement with the 4% difference we see between our
calculate decay constants and the experimental values [13, 6].

Including all systematic errors we calculate the unrenormalized kaon B-parameter

BK = 0.565(10)stat(06)FVE(11)Ch(06)ms(23)scale, (5.1)

where the errors are due to statistics, finite-volume effects, chiral extrapolation, determination of
the physical strange quark mass and scaling to the continuum limit, respectively.

6. Renormalization

In order to compare ourBK result, we must determine the renormalization of its operator and
the matching toMS scheme. We use nonperturbative renormalization in the RI-MOM scheme, for
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which domain-wall fermions are well suited; see Ref. [1] for a full description of the method. We
find ZMS

BK
= 0.928(05)(23) [10] where the first error is statistical and the second is a systematic

error arising from discretization errors [13]. Combining all the systematic errors in quadrature we
quote for our final number

BMS
K (2 GeV) = 0.524(10)(28), (6.1)

where the first error is statistical and the second is the estimated systematic uncertainty.

7. Conclusions

Despite the computational cost of domain-wall fermion simulations, we have simulated at
light enough dynamical and valence quark masses such that we can make use of NLO XPT to
guide extrapolations to the physical point. We find that NLO SU(3) XPT cannot be used up to the
kaon mass, and extrapolations in the two light dynamical quarks is much more reliable. Our value
for BK removes the quenching systematic completely and correctly includes the dynamical effects
of 2+1 quark flavours. Forthcoming simulations at finer lattice spacings will improve this result
and allow better estimates of the systematic errors.
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