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1. Introduction

Precision measurements of the CKM matrix put the Standard Model to a stringent test and
constrain possible physics beyond it. Using the measured frequency of Bq −Bq, q ∈ {d,s} oscil-
lations to determine the CKM matrix elements |Vtq| requires a reliable lattice calculation of the
non-perturbative Bq−Bq mixing matrix elements 8

3 m2
Bq

f 2
Bq

BBq . A 2 + 1 flavor, unquenched calcu-
lation of fBq and BBq has been carried out by the RBC-UKQCD collaboration in the infinite heavy
quark mass limit using light domain-wall fermions on a (2 fm)3 spatial volume [1, 2]; this is cur-
rently being extended to a (3 fm)3 spatial volume and towards physical light quark masses [3]. In
the following, we discuss the perturbative lattice-continuum matching of the operators relevant for
the RBC-UKQCD calculation, following in part the detailed discussion in Refs. [2, 4]. We also
point out the subtle degeneracy of heavy-light meson ground states, and discuss its implications for
the extraction of fB and BB from lattice correlation functions.

2. Action and Feynman Rules

The heavy b quark is described by an improved lattice version of the static limit of heavy quark
effective theory with smeared, SU(3)-projected gauge links V 0(~x, t) to reduce noise:

Sstatic = ∑
~x, t

h(~x, t +a)
[
h(~x, t +a)−V †

0(~x, t)h(~x, t)
]
. (2.1)

The SU(3) projection (discussed in Ref. [2]) simplifies perturbative calculations by allowing the
smeared gauge links to be expanded in terms of an effective gauge field Ba

0 (~x, t); in momentum
space Ba

0 (q) = hµ(q)Aa
µ(q), where Aa

µ(q) is the physical gauge field and hµ(q) is a form factor
depending on the smearing scheme. We focus on one of the two schemes used in the RBC-UKQCD
calculation (one-level APE blocking with parameter α = 1), resulting in a heavy quark gluon vertex

Y a
µ (k,k′) =−ig0T a

δµ0e−i(k0+k′0)/2 → Y a
µ(k,k′) =−ig0T ahµ(q)e−i(k0+k′0)/2, (2.2)

where g0 is the bare lattice coupling, q is the gluon momentum, and hµ(q) is given by

hµ(q) = (h0(q), h j(q)) =

(
1− 2

3

3

∑
l=1

sin2
(ql

2

)
,

2
3

sin
(q0

2

)
sin
(q j

2

))
. (2.3)

The heavy quark two-gluon vertex and the heavy quark propagator are given in Ref. [4].

The light quarks are described by the domain-wall fermion action. Each light flavor is repre-
sented by a (4 + 1)-dimensional Wilson-style fermion field ψs(~x, t) where 1 ≤ s ≤ N labels the
coordinate in the fifth dimension. The physical quark field q(~x, t) is constructed from chiral surface
states at s = 1 and s = N via q(~x, t) = PRψ1(~x, t) + PLψN(~x, t). The domain-wall height M5 is a
fixed parameter of the theory; we set M5 = 1.8 to match the RBC-UKQCD calculation. A detailed
description of domain-wall fermions and their perturbative treatment for our choice of gauge action
is given in Ref. [4] and references therein, especially Ref. [5]. In the perturbative calculation the
light quark masses were set to zero and the size N of the fifth dimension was taken to be large,
resulting in an exact chiral symmetry as N → ∞. The gluons were described by the Iwasaki gauge
action, whose Feynman rules are given in Ref. [4].
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3. Perturbative Lattice-Continuum Matching at One-Loop

The full QCD operators relevant for the extraction of fB and BB, defined in MS(NDR) at the
scale µb = mb of the b quark mass, are the axial vector current Aρ = bγργ5q and the parity-even
part of the ∆B = 2 vector-axial four-quark operator:

[
bγ

ρ(1− γ5)q
][

bγρ(1− γ5)q
]
→ OVV+AA =

(
bγ

ρq
)(

bγρq
)
+
(
bγ

ρ
γ5q
)(

bγργ5q
)
. (3.1)

We match these operators at the scale µb to lattice operators in the static effective theory (de-
scribed in Sec. 2) at the lattice scale a−1 via the continuum version of the static effective theory
renormalized at a scale µ . Throughout our one-loop calculation we choose to set µ = a−1; in the
RBC-UKQCD calculation, the lattice scale is given by a−1 = 1.62 GeV. The full QCD operators
are related to continuum static operators by

Aρ(µb) = CA(µb,µ)Ãρ(µ)+O(ΛQCD/µb), (3.2)

OVV+AA(µb) = Z1(µb,µ)ÕVV+AA(µ)+Z2(µb,µ)ÕSS+PP(µ)+O(ΛQCD/µb). (3.3)

In terms of the static quark and antiquark fields h(±)(x) = e±imbv·x(1±/v)b(x)/2 and for mb → ∞,

Ãρ = h
(+)

γργ5q, (3.4)

ÕVV+AA = 2
(

h
(+)

γ
ρq
)(

h
(−)

γρq
)

+2
(

h
(+)

γ
ρ

γ5q
)(

h
(−)

γργ5q
)

, (3.5)

ÕSS+PP = 2
(

h
(+)

q
)(

h
(−)

q
)

+2
(

h
(+)

γ5q
)(

h
(−)

γ5q
)

. (3.6)

The static effective action discussed in Sec. 2 describes h(+) with v = (1,~0), corresponding to
a stationary meson. The constants CA(µb,µ) and Z1,2(µb,µ) are known at one-loop; they are
summarized in Ref. [2]. Using the latest PDG values for αMS

s (mZ) and mb, and running the coupling
down at four-loops with the physical number of flavors to determine αMS

s (µb) and αMS
s (µ) we

obtain CA = 1.057, Z1 = 0.934, Z2 =−0.151.

We now describe the matching Ãρ(µ) = C̃A(µ,a−1)a−3Alat
ρ of the heavy-light axial currents

Ãρ(µ) and Alat
ρ (which is dimensionless) in the continuum and lattice versions of the static ef-

fective theory. Results for the four-fermion operators are summarized at the end of this section. We
compare the correlation function 〈(h(x)Γq(x))h(y)q(z)〉 in both theories; in this discussion only
one heavy quark field h(+) ≡ h enters. For the axial current Γ = γργ5, but the light quark chiral
symmetry and the heavy quark spin symmetry h → e−iφ jε jklσkl h of both the continuum and the lat-
tice theory render the matching Γ-independent. At one-loop and for small external quark momenta
p ' 0 the continuum and lattice correlation functions are

〈(hΓq)hq〉=
Zh

ip0
Γ(1+δV )

Z2

i/p
, 〈(hΓq)hq〉lat =

Zlat
h

ip0
Γ(1+δV lat)

(1−w2
0)Zw Zlat

2
i/p

, (3.7)

where the Feynman diagrams contributing at one-loop are shown in Fig. 1. All Z-factors have
values 1+O(αs), and the vertex corrections δV,δV lat are O(αs) and Γ-independent as noted above.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
5
1

The Static Approximation to B Meson Mixing using Light DWF Thomas T. Dumitrescu

Figure 1: One-Loop Corrections to the
Heavy-Light Axial Current

The continuum quantities are known [4]; we focus
on the lattice correlation function: w0 = 1−M5 is a
domain-wall fermion specific constant, and an over-
lap factor 1−w2

0 connecting the five-dimensional and
physical quark fields is present even at tree level. The
light quark wavefunction renormalization ZwZlat

2 due to
Fig. 1 (a) and (b) was calculated in Ref. [5]. Zlat

2 can
be viewed as the four-dimensional wavefunction renor-
malization, while Zw renormalizes the overlap factor
1−w2

0. Due to tadpoles, the one-loop correction to Zw

is enormous. As described in Ref. [5], this is remedied
by reorganizing the perturbation series according to the
mean-field approach, resulting in the prescriptions M5 → M̃5 = M5−4(1−u), w0 →wMF

0 = 1−M̃5

and qlat → qlat, MF = u−1/2qlat to be made throughout the calculation; here u = P1/4 where P is
the measured average plaquette (for the RBC-UKQCD calculation u = 0.8757) and the superscript
‘MF’ identifies mean-field improved quantities. We calculate the matching factor C̃A(µ,a−1) using

Figure 2: One-Loop Vertex Correc-
tion to the Heavy-Light Axial Current

both the usual continuum MS coupling and a mean-field
improved version, enabling an estimate of O(α2

s ) correc-
tions. αMS

s (µ) was obtained by running down to the c
quark mass with the physical number of flavors and back
up to µ using only three dynamical flavors to match the
RBC-UKQCD 2 + 1 flavor calculation: αMS

s (µ) = 0.326
and αMF

s (µ) = 0.177. The calculation of the vertex cor-
rection δV lat in Fig. 1 (c) and the heavy quark wavefunc-
tion renormalization Zlat

h in Fig. 1 (d) and (e) is straight-
forward [2, 4]. Infrared divergences only occur in QED-
like diagrams and are regulated by a gluon mass λ which
cancels from the matching factor. Furthermore, only the

unsmeared δµ0 part of hµ(q) in Eq. (2.3) gives rise to infrared divergences; the sine functions in
the smeared part of hµ(q) cancel all infrared divergent loop propagators. A generic feature of
domain-wall fermion perturbation theory is the appearance of correlation functions 〈q(−p)ψs(p)〉,
〈ψs(−p)q(p)〉 connecting external four-dimensional quarks to five-dimensional quarks propagat-
ing in loops, as shown in Fig. 2. A subtlety pointed out in Ref. [6] is that the correct renormalization
prescription for Zlat, MF

h includes the linearly divergent heavy quark mass renormalization:

Zlat, MF
h = 1− i

∂Σ(p0)
∂ p0

∣∣∣
p0=0

+Σ(p0 = 0), (3.8)

where the heavy quark self energy Σ(p0) itself is not affected by mean-field improvement. Com-
paring the correlation functions in Eq. (3.7) after mean-field improvement gives a matching factor

C̃A(µ,a−1) =
√

u√
(1− (wMF

0 )2)ZMF
w

ZMF
A (µ,a−1), ZMF

A (µ,a−1) = 1+
αs

3π
(−1.584). (3.9)
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The overall factor ZΦ(µb,a−1) = CA(µb,µ)C̃A(µ,a−1) relating the axial currents in full QCD and
the lattice static effective theory, computed using both αMS

s (µ) and αMF
s (µ), is ZMS

Φ
(µb,a−1) =

0.902, ZMF
Φ

(µb,a−1) = 0.961. While the one-loop result is small and reliable, the large difference
between αMS

s (µ) and αMF
s (µ) induces a ∼ 7% systematic error ultimately warranting nonpertur-

bative renormalization.

For completeness, we quote the lattice-continuum matching constants (calculated in Refs. [2, 4])
for the four-fermion operators in Eqs. (3.5) and (3.6). For i ∈ {VV +AA,SS+PP} and at one-loop

Õi(µ) =
u

(1− (wMF
0 )2)ZMF

w
ZMF

i (µ,a−1)a−6Olat
i , ZMF

VV+AA = 1+
αs

4π
(−4.462), ZMF

SS+PP = 1,

(3.10)
where the Olat

i are dimensionless. Since the coefficient Z2 of ÕSS+PP in Eq. (3.3) is O(αs), only
the domain-wall overlap factors contribute to the lattice-continuum matching for this operator.
While formally inconsistent, we use the one-loop mean-field improved values of the overlap factors
throughout to ensure tadpole-safety. Combining Eqs. (3.3) and (3.10) we get:

OVV+AA = ZVA(µb,a−1)a−6Olat
VV+AA +ZSP(µb,a−1)a−6Olat

SS+PP, (3.11)

ZMS
VA = 0.902, ZMF

VA = 0.769, ZMS
SP =−0.123, ZMF

SP =−0.133. (3.12)

4. Ground State Degeneracies of Static-Light Mesons and fB, BB on the Lattice

Let H be the Hamiltonian corresponding to the full lattice action in Sec. 2. For any t, the heavy
quark action in Eq. (2.1) is invariant under h(~x) → eiθ(~x)h(~x) for a set of V/a3 parameters θ(~x),
where V = L3 is the spatial lattice volume. If Θ(~x) is the generator corresponding to θ(~x) then

[Θ(~x),h(~y)] = h(~x)δ~x~y,
[
Θ(~x),h(~y)

]
=−h(~x)δ~x~y, [Θ(~x),Θ(~y)] = 0, [Θ(~x),H] = 0. (4.1)

Simultaneously diagonalize H and all Θ(~x). Since Eq. (4.1) implies that h(~x) and h(~x) raise
and lower the eigenvalues of Θ(~x) by 1, and the charge conjugation invariance of QCD implies
Θ(~x)|0〉 = 0, the spectrum of Θ(~x) contains Z. Define the unit-norm state |B(~x)〉 to be the lowest
energy state with the quantum numbers of a B meson which also satisfies Θ(~y)|B(~x)〉= δ~x~y|B(~x)〉.
Thus 〈B(~x)|B(~y)〉 = δ~x~y, and we can interpret these states as having the heavy quark localized at
a fixed lattice site with the light quark smeared out around it. Since T (î)Θ(~x)T (î)−1 = Θ(~x + î),
where T (î) is a lattice translation by a in the spatial direction î, all B meson ground states |B(~x)〉 are
degenerate. We also define total spatial momentum eigenstates |B̃(~kl)〉, where li ∈ Z (i = 1,2,3):

|B̃(~kl)〉=
√

2a3 ∑
~x

e−i~kl ·~x|B(~x)〉, ~kl =
2π

L
(l1, l2, l3), −

L
2a

< li ≤
L
2a

, 〈B̃(~kl′)|B̃(~kl)〉= 2V δl′l.

(4.2)
As a → 0,V → ∞, these states reduce to continuum momentum eigenstates |B̃(~p)〉c with conven-
tional static effective theory normalization c〈B̃(~p ′)|B̃(~p)〉c = 2(2π)3δ (3)(~p ′−~p). In the mb → ∞

limit, these states only differ from the corresponding full QCD states by a factor of
√

mB. Thus:
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fB
√

mB ≡ 〈0|A0(~0,0)|B̃(~p =~0)〉c = ZMF
Φ a−3〈0|Alat

0 (~0,0)

(
√

2a3 ∑
~x
|B(~x)〉

)
=

=
√

2ZMF
Φ a−3/2〈0|Alat

0 (~0,0)|B(~0)〉 ≡
√

2ZMF
Φ a−3/2

Φ
lat
B .

(4.3)

In complete analogy to the above, we can construct B meson ground states states |B(~x)〉. Using
these and Eq. (3.11), the calculation of the B−B mixing matrix element 8

3 m2
B f 2

B BB = 〈B|OVV+AA|B〉
is reduced to the calculation of the lattice quantities 〈B(~0)|Olat

i (~0,0)|B(~0)〉, i∈{VV +AA,SS+PP}.

The degeneracy of the states |B(~x)〉 complicates the extraction of Φlat
B and 〈B(~0)|Olat

i (~0)|B(~0)〉,
since even a large time separation of source and sink may not project onto a unique B meson ground
state: different combinations of the |B(~x)〉 may enter the correlation functions used for calculating
the matrix elements and those used for normalization. To see this, consider the extraction of Φlat

B ;
we now work exclusively in the lattice theory. Define local and smeared B meson interpolation
operators AL

0(~x, t) = h(~x, t)γ0γ5q(~x, t), AS
0(t) = ∑~y∈∆V ∑~z∈∆V h(~y, t)γ0γ5q(~z, t), where ∆V is a fixed

subvolume of V and the smeared operators are Coulomb gauge fixed. From experience, local-
local correlation functions in the static effective theory are prohibitively noisy; instead calculate
the local-smeared and smeared-smeared correlation functions. Inserting a complete set of states
∑~w |B(~w)〉〈B(~w)|+(higher energy states) with the correct quantum numbers, we have as t → ∞:

C LS(t)≡ ∑
~x∈V

〈0|AL
0(~x, t)A

S
0(0)†|0〉= Φ

lat
B e−m∗

B t

(
∑
~w∈V

〈B(~w)| ∑
~y∈∆V

∑
~z∈∆V

q(~y,0)γ0γ5h(~z,0)|0〉

)
, (4.4)

C SS(t)≡ 〈0|AS
0(t)A

S
0(0)†|0〉= e−m∗

B t

(
∑
~w∈V

∣∣∣〈B(~w)| ∑
~y∈∆V

∑
~z∈∆V

q(~y,0)γ0γ5h(~z,0)|0〉
∣∣∣2) . (4.5)

where m∗
B is the unphysical mass of the lattice B meson. Since C SS(t) contains a sum over squares,

the use of a naive ratio ∼ C LS(t)/
√

C SS(t) requires a translationally invariant wall source ∆V = V
to project onto the unique state of zero-momentum. In this case the sums over ~w only give a
factor of V/a3 and Φlat

B = C LS(t)/
√

C SS(t)e−m∗
B t V/a3. To remedy the poor overlap of the wall

source with the B meson ground state - especially on large lattices - consider a fixed box source
and a series of box sinks summed over an entire timeslice to project onto zero momentum; this
approach also allows more general types of smearing, such as the use of an atomic wavefunction.
Let ÃS

0(~w, t) = ∑~y∈∆V~w ∑~z∈∆V~w
h(~y, t)γ0γ5q(~z, t) where ∆V~w is a box of fixed size located at ~w and

∆V~0 = ∆V , ÃS
0(~0, t) = AS

0(t). Define a corresponding smeared-smeared correlation function and
insert a complete set of momentum eigenstates 1

2V ∑~kl
|B̃(~kl)〉〈B̃(~kl)|+(higher energy states); then

as t → ∞,

C S̃S̃(t)≡∑
~w
〈0|ÃS

0(~w, t)AS
0(0)†|0〉= e−m∗

B t

2V ∑
~w
〈0|ÃS

0(~w, t)|B̃(~0)〉〈B̃(~0)|AS
0(0)†|0〉= e−m∗

B t

2a3

∣∣∣〈B̃(~0)|AS
0(0)†|0〉

∣∣∣2.
(4.6)
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Since |B̃(~0)〉 = (2a3)1/2
∑~w |B(~w)〉, we can rewrite the right side of Eq. (4.4) and obtain another

ratio for Φlat
B which reaches a plateau more quickly due to the improved ground state overlap:

C LS(t)em∗
B t/2
/√

C S̃S̃(t) = Φ
lat
B 〈B̃(~0)|AS

0(0)†|0〉
/√∣∣∣〈B̃(~0)|AS

0(0)†|0〉
∣∣∣2 = Φ

lat
B . (4.7)

The calculation of 〈B(~0)|Olat
i (~0)|B(~0)〉, i ∈ {VV +AA,SS +PP} is considerably simpler. Define

COi(T, t)≡ ∑
~x∈V

〈0|AS
0 (T )O lat

i (~x, t)AS
0(0)†|0〉, (4.8)

where AS
0 (T ) = ∑~y∈∆V ∑~z∈∆V q(~y,T )γ0γ5h(~z,T ). Proceeding as above, we have as t, T − t → ∞:

〈B(~0)|Olat
i (~0,0)|B(~0)〉= COi(T, t)

/
C SS(T ) = COi(T, t)em∗

BT/2
/√

C SS(T − t)C SS(t). (4.9)

Here no zero momentum projection is necessary; the use of C SS for smaller time separations simply
reduces noise. Using Eqs. (4.7) and (4.9) we can thus calculate fB and BB using only box sources
and sinks. These are preferable to wall sources, whose poor ground state overlap led to late plateaus
in the V = (2 fm)3 RBC-UKQCD calculation and presents an even bigger problem for the ongoing
extension to V = (3 fm)3. It is worth emphasizing that this simple method relies on the particular
properties of the static effective theory, and further such improvements might be possible.
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