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1. Introduction

An accurate determination of the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements,Vi j ,
is an essential step in testing the Standard Model (SM). Likethe quark masses, the couplings
Vi j are free parameters of the SM and therefore cannot be predicted. Instead they are extracted
after confronting the experimental measurements to the SM theoretical expressions. The simplest
processes in that respect are the leptonic and semileptonicdecays of pseudoscalar mesons. In this
note we considerD decays, namely

dΓ
dq2 (Dq → Pqqℓνℓ) = |Vcq|2

G2
F

192π2m3
Dq

λ 3/2(q2)|F+(q2)|2 ,

Γ(D+
q → ℓνℓ) = |Vcq|2

G2
F

8π
f 2
Dq

mDqm
2
µ

(

1−
m2

µ

mDq

)

, (1.1)

whereℓ is µ or e. The left-hand-side in the above expressions is measured experimentally, while the
computation of hadronic form factor,F+(q2), and/or the meson decay constant,fDq, requires a first
principle description of non-perturbative QCD effects. Wenow restrain our attention toF+(q2), one
of the two form factors which parameterise the SM weak matrixelement〈π(~k)|(V −A)µ |D(~p)〉 ≡
〈π(~k)|Vµ |D(~p)〉, i.e.,

〈π(~k)|Vµ |D(~p)〉 =

(

p+k−q
m2

D −m2
π

q2

)

µ
F+(q2)+qµ

m2
D −m2

π
q2 F0(q

2) , (1.2)

both depending onq2 = (p−k)2 only, with q2 ∈ (0,(mD −mπ)2].
Lattice QCD is the only currently available method which allows us to compute this matrix

element without introducing any extra parameter and, at least in principle, with an accuracy that
can be matched to the experimental one. In practice, however, there is still quite a room for im-
provement on systematic errors. Here we want to address those that arise from the extraction of the
matrix element (1.2) from the correlation functions.

1.1 An abridged description of the standard procedure

The standard method consists in computing the 2- and 3-pointfunctions, namely,

Cππ
2 (~k, t) = ∑

~x

〈(q̄γ5q)~x,t(q̄γ5q)~0,0ei~k~x〉 t≫0−→ Zπ

2Eπ
e−Eπ t ,

CDD
2 (~p, t) = ∑

~x

〈(c̄γ5q)~x,t(q̄γ5c)~0,0ei~p~x〉 t≫0−→ ZD

2ED
e−EDt ,

C
πVµ D
3 (q, t; tsource) = ∑

−→x ,−→z
〈(q̄γ5q)~x,tsource(q̄γµc)~z,t(c̄γµq)~0,0〉e

−i(~q~z−~k~x)

0≪t≪tsource−→ Zπ
1/2

2Eπ
e−Eπ t〈π(~k)|Vµ |D(~p)〉ZD

1/2

2ED
e−ED(tsource−t) , (1.3)

where we also indicate their asymptotic behavior, using thestandard notation,ZD = |〈0|c̄γ5q|D(~p)〉|2,
and similar forZπ . The matrix element (1.2) corresponds to a plateau of the ratio

R=
C

πγµ D
3 (q, t; tsource)

CDD
2 (~k, tsource− t)Cππ

2 (~p, t)
×
√

Zπ
√

ZD
0≪t≪tsource−→ 〈π(~k)|Vµ |D(~p)〉 . (1.4)
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q̄(~θ3)

V − A

Figure 1: The valence quark diagram of the 3-point function,C
PVµD
3 (~k,t). We indicate the twisting angles,

~θ1,2,3, which are discussed in the text.

In case ofD-decays the plateaus are known not to be long enough to guarantee a percent accu-
racy (especially when the momenta are given to either of the two mesons). Furthermore,

√
Zπ

and
√

ZD should be computed from a separate study of the 2-point functions, the errors of which
are carried over to the ratioR. Finally, a non-negligible statistical error is introduced by the mul-
tiplicative renormalization of the vector current, especially when consistently implementing the
O(a) improvement of the Wilson quark operators on the realistic lattices and one of the quark
being charmed (heavy). All these difficulties can be avoidedby considering various double ra-
tios of 3-point correlation functions. The efficiency of thedouble ratios was introduced and tested
first in heavy-to-heavy[1] and then in heavy-to-light decays [2]. InD-decays to a light meson
an extra problem is related to the available kinematics on the lattice. More specifically, with the
periodic boundary conditions the minimal momentum is(2π)/L which is too large (L = NLa not
large enough) if one is to keep the lattice spacing,a, sufficiently small in order to accommodate the
charm quark mass. To get around this problem, we adopted the twisted boundary conditions (twBC)
recently proposed in ref. [3]. In such a way the momenta~p and/or~k become~θ/L = (θ0,θ0,θ0)/L,
where the componentsθ0 are chosen anywhere between 0≤ θ0 < π. In this way we are able to
compute the form factorF+(q2) at severalq2 > 0.

2. Double ratios

In what follows we consider 4 different strategies to increase the accuracy of extraction the
form factorF+(q2) for different value ofq2 by combining the 3-point functions in several different
double ratios. At this point we should emphasize that in eachof the strategies discussed in this
section, the multiplicative renormalization factors, as well as the source termsZπ,D, cancel out.
We then numerically test each proposed strategy to check whether or not a plateau region is pro-
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nounced enough and the statistical quality of the signal satisfactory to reach a percent accuracy of
the extracted form factor.

2.1 First strategy

We first keep theD-meson at rest and inject momenta to the pion only. This is done by
imposing~θ1 = ~θ3 =~0 (c.f. fig. 1), while for~θ2 we choose several different values to explore the
kinematics available from this decay, 0≤ q2 ≤ q2

max. Similar to what has been proposed by JLQCD
in their study of theKℓ3-decay [4], we consider the following double ratios (~k = ~θ2/L):

CπV0D
3

(

~0, t
)

CDV0π
3

(

~0, t
)

CπV0π
3

(

~0, t
)

CDV0D
3

(

~0, t
)

plateau−→ R0 , (2.1)

CπV0D
3

(

~k, t
)

Cππ
2

(

~0, t
)

CπV0D
3

(

~0, t
)

Cππ
2

(

~k, t
)

plateau−→ R1 , (2.2)

CπViD
3

(

~k, t
)

CπV0π
3

(

~k, t
)

CπV0D
3

(

~k, t
)

CπViπ
3

(

~k, t
)

plateau−→ R2 . (2.3)

These ratios then can be cast into the expressions leading toF+(q2), i.e.,

F+(q2) = R1×F0(q
2
max)×

mD +mπ

mD +Eπ

[

1+
mD −Eπ

mD +Eπ
×ξ (q2)

]−1

, (2.4)

where F0(q
2
max) =

2
√

mDmπ

mD +mπ

√
R0 , (2.5)

and ξ (q2) = 1− 2mDR2

(mπ +Eπ)+ (mD −Eπ)R2
. (2.6)

For short we wroteq2ξ (q2) = (m2
D −m2

π)[F0(q2)/F+(q2)−1]. The quality of the plateaus is pre-
sented in fig. 2. To that end we use the publicly available ensembles of the SU(3) gauge field
configurations, produced by the QCDSF collaboration by using theO(a)-improved Wilson quark
action withNF = 2 [5]. We computed the quark propagators and correlation functions on the con-
figurations gathered atβ = 5.29, corresponding toa≃ 0.08 fm, on the 243×48 lattice, each time
keeping the light valence quark mass equal to that of the sea quark. In fig. 2 we see that the signals
for R0 andR1 are indeed very good. The fact that the signal forR2 is not as good does not trouble
the whole strategy because it is only needed to computeξ (q2), which itself is a correction to 1 in
both eq. (2.6) and in eq. (2.4). On the other hand the fact thatthe quality is less good forR2(t) is
expected as its computation involves the correlation function with with “γi"-matrices (mixing the
“large" and “small" components of the Dirac spinors), in contrast toR0,1(t) in which we compute
the correlation functions with “γ0"-matrix only.

2.2 Second and third strategies

Next we consider the kinematics in which we either keep theD-meson at rest (~θ1 = ~θ3 =~0)
and inject momenta to the pion source (~θ2 = ~θq), or keep the pion at rest (~θ1 = ~θ3 =~0) and inject
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Figure 2: Double ratios,R0,1,2(t), illustrating the first strategy. The lattice data refer to the simulation with
Wilson O(a)-improved quarks withNF = 2 (β = 5.29) andκq = κsea= 0.1355. The shown signals refer to
q2 ≈ 1 GeV2.

momenta toD-meson (~θ1 = ~θc). Notice that keeping theq2 fixed requires that~θc = (mD/mπ)× ~θq.
We then build the following four double ratios:

CπV0D
3

(

~0,~p, t
)

CDV0π
3

(

~p,~0, t
)

CπV0π
3

(

~0,~0, t
)

CDV0D
3 (~p,~p, t)

plateau−→ R3 ,
CDV0π

3

(

~0,~k, t
)

CπV0D
3

(

~k,~0, t
)

CπV0π
3

(

~0,~0, t
)

CDV0D
3

(

~k,~k, t
)

plateau−→ R4 ,

CπViD
3

(

~0,~p, t
)

CDViπ
3

(

~p,~0, t
)

CπV0π
3

(

~0,~0, t
)

CDViD
3 (~p,~p, t)

plateau−→ R′
3 ,

CDViπ
3

(

~0,~k, t
)

CπViD
3

(

~k,~0, t
)

CπViπ
3

(

~k,~k, t
)

CDV0D
3

(

~0,~0, t
)

plateau−→ R′
4 , (2.7)

where~p = ~θ1/L, and~k = ~θ2/L. In terms of form factors, the above ratios read

R3 =

[

ED +mπ +(ED −mπ)ξ (q2)
]2

2mπ2ED
[F+(q2)]2 , R4 =

[

mD +Eπ +(mD −Eπ)ξ (q2)
]2

2Eπ2mD
[F+(q2)]2 ,

R′
3 = pi

1−ξ 2(q2)

4mπ
[F+(q2)]2 , R′

4 = ki
1−ξ 2(q2)

4mD
[F+(q2)]2 . (2.8)

Note that UKQCD [6] recently consideredR3 andR′
3 to probeFK→π

+ (0). We now need to combine
the two of above four double ratios to obtainF+(q2), namely eitherR3 with R′

3, orR4 with R′
4, orR3

with R′
4, or R′

3 with R4. In fig. 3 we show the quality of the signals corresponding to the same set-up
as the signals displayed in fig. 2. We observe that onlyR4 andR′

4 are reasonably good, whereas
R3(t) andR′

3(t) do not exhibit plateaus, likely due to the fact thatmD/mπ is large, so thatθc in
~θc = (mD/mπ)× ~θq is such that the twBC simply destroys the signal. Therefore,we will retain the
ratiosR4 andR′

4 which can be used to compute the form factorF+(q2) for various values ofq2.
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Figure 3: Illustration of the signals for the double ratios used in thesecond, third (R3, R4, R′
3, R′

4) and fourth
strategies (R5, R6), defined in the text.

2.3 Fourth strategy

If one wants to study the shape of the form factor (i.e., itsq2-dependence), then it is worth
trying to impose the twBC on the spectator quark (~θ3 6= 0) without twisting the other two quarks
(~θ1 = ~θ2 =~0). In such a way we may probe many values ofq2 but never reachq2 = 0, because in
this set-up the conditionED = Eπ does not allow a real solution in|~p| = |~k| = ~θ3/L. To test this
option we consider the following two ratios:

CπV0D
3θ (t)CDV0π

3θ (t)

CπV0π
3θ (t)CDV0D

3θ (t)

plateau−→ R5 ,
CDViπ

3θ (t)CπViD
3θ (t)

CπViπ
3 (t)CDViD

3 (t)

plateau−→ R6 , (2.9)

where index “θ" is used to distinguish that the spectator quark is actuallytwisted. Expressed in
terms of form factors

R5 =

[

ED +Eπ +(ED −Eπ)ξ (q2)
]2

2ED2Eπ
[F+(q2)]2 , R6 = [F+(q2)]2 . (2.10)

The corresponding signals from our numerical study are shown in fig. 3. While the statistical
quality of R5(t) is reasonably good, the signal forR6(t) is not promising if we are after a strategy
that could lead us to a percent accuracy on the extracted formfactor. Although we did not try it,
we suspect the flatness ofR5 could be achieved by a judicious choice of smearing. We pointout,
however, that our numerical evaluation of the ratios (2.9) indicate the large statistical errors so that
this strategy is not competitive with the first or the third ones, discussed in this section.

3. Summary

It this note we report on the results of our exploratory studyin which we use various double
ratios and twisted boundary condition on the quark propagators in order to extract the form factor

6
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Figure 4: D → π semileptonic form factors for the unphysically heavy pions: left panel corresponds to
mπ ≃ 750MeV, the right one tomπ ≃ 600MeV

relevant to the semileptonic heavy-to-lightD-decays to a percent accuracy. In total we proposed
four different strategies, which we then tested numerically on the set of unquenched (NF = 2) gauge
field configurations. On the basis of our analysis we concludethat the first (double ratiosR0,1,2) and
the third strategy (R4 andR′

4), discussed in the text, can be used to compute the form factor F+(q2)

to a desired precision. Even though our numerical tests are made by using the Wilson quarks, our
conclusions apply to any lattice QCD action.

In fig. 4, we illustrate the results obtained by employing thefirst strategy at three values of the
twisting angle~θ . Those will be improved and the results discussed in our forthcoming paper.
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