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1. Introduction

An accurate determination of the Cabibbo—Kobayashi-Maak&£KM) matrix elementsy;,
is an essential step in testing the Standard Model (SM). thlkeequark masses, the couplings
Vij are free parameters of the SM and therefore cannot be peddidhstead they are extracted
after confronting the experimental measurements to thet&dretical expressions. The simplest
processes in that respect are the leptonic and semileplensyys of pseudoscalar mesons. In this
note we consideD decays, namely

dr G2
dqz( q — PaglVe) = ‘ch‘ 1927_[2mg )‘3/2( 2)]F+(q2)]2,
G2 m2
F(D§ — tvy) = |ch| G fququ2 1—m— : (1.1)
Dq

wherel is u or e. The left-hand-side in the above expressions is measuptiexentally, while the
computation of hadronic form factdf, (g2), and/or the meson decay constafigf,, requires a first
principle description of non-perturbative QCD effects. kidgv restrain our attention @, (¢?), one
of the two form factors which parameterise the SM weak matiéxnent(rr(k)|(V — A)uD(P)) =

(m(k) Vu[D(P)). i.e

(RN |D(P)) = <p+k—q”‘%q‘2”‘%) Fo () + g, Mo
u

"Fo(0f), (1.2)

both depending og? = (p— k)2 only, with g2 € (0, (mp — my)?].

Lattice QCD is the only currently available method whichoai us to compute this matrix
element without introducing any extra parameter and, &t ligaprinciple, with an accuracy that
can be matched to the experimental one. In practice, howthere is still quite a room for im-
provement on systematic errors. Here we want to address thasarise from the extraction of the
matrix element (1.2) from the correlation functions.

1.1 An abridged description of the standard procedure

The standard method consists in computing the 2- and 3-poictions, namely,
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CRP(B,t) = 3 ((CWs)xa (@C)g,€™) > ﬁe Eot
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P Stpuee T 6 B (k) Vy D) 2 ol (1.3)
2B, 2Ep

where we also indicate their asymptotic behavior, usingthedard notation?s = |(0|Cysq/D(B))|?,

and similar forZ;. The matrix element (1.2) corresponds to a plateau of the rat

B CnVIJ (q7t’tsource \/y\/_ 0<<t<<tsource )|V |D(ﬁ)> (l 4)
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Figure 1. The valence quark diagram of the 3-point functiﬁg\,/“D(R,t). We indicate the twisting angles,
51,2,3, which are discussed in the text.

In case ofD-decays the plateaus are known not to be long enough to geararpercent accu-
racy (especially when the momenta are given to either ofwerhesons). Furthermorg/ %5
and+/Zp should be computed from a separate study of the 2-pointiinsstthe errors of which
are carried over to the ratid. Finally, a non-negligible statistical error is introddcky the mul-
tiplicative renormalization of the vector current, espdlgi when consistently implementing the
O'(a) improvement of the Wilson quark operators on the realigtttides and one of the quark
being charmed (heavy). All these difficulties can be avoibdgdonsidering various double ra-
tios of 3-point correlation functions. The efficiency of ttheuble ratios was introduced and tested
first in heavy-to-heavyl] and then in heavy-to-light decays [2]. [D-decays to a light meson
an extra problem is related to the available kinematics erldttice. More specifically, with the
periodic boundary conditions the minimal momentunids) /L which is too large I{ = N a not
large enough) if one is to keep the lattice spacmgufficiently small in order to accommodate the
charm quark mass. To get around this problem, we adoptedisietl boundary conditions (twBC)
recently proposed in ref. [3]. In such a way the momemand/ork becomef /L = (6, 6o, 6p) /L,
where the component$, are chosen anywhere betweerc @, < 7. In this way we are able to
compute the form factdf, (g°) at severaty? > 0.

2. Doubleratios

In what follows we consider 4 different strategies to inse#he accuracy of extraction the
form factorF, (¢?) for different value ofg? by combining the 3-point functions in several different
double ratios. At this point we should emphasize that in edHdhe strategies discussed in this
section, the multiplicative renormalization factors, asllvas the source termé7p, cancel out.
We then numerically test each proposed strategy to checkheher not a plateau region is pro-
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nounced enough and the statistical quality of the sign@faatory to reach a percent accuracy of
the extracted form factor.

2.1 First strategy

We first keep theD-meson at rest and inject momenta to the pion only. This isedon
imposing 6, =6;=0 (c.f. fig. 1), while for6, we choose several different values to explore the
kinematics available from this decay<0g? < 0,5, Similar to what has been proposed by JLQCD
in their study of theK,3-decay [4], we consider the following double ratid}&( §2/L):

cIveD (6,t> cDvor (é,t)

plateau

= (2.1)
ch°"<o,t) CEVOD( )
™oD (1,
] (k,t> cm ( ,t) —
= - (2.2)
cIveD <O,t> cpm (k,t)
D (1, ™ot (1,
o (k,t) CcIMo <k,t) st 03
cveD (R,t) cmr (k,t)
These ratios then can be cast into the expressions leadimgdd), i.e
Mp+My [, mMp—Eg -
F(0?) = Ry x Fo(0R4) X 1 xE(P)| 2.4
+(0°) = Ru x Fo(Ofax) mD+EJ P—— $(a) (2.4)
2./MpMy
h Fn (02 _ o 25
where  Fo(Gfa) o+ my Vo (2.5)
and &(?) = 1— 2moRy (2.6)

(Mr+Ex)+(Mp —Ex)Ry

For short we wrote?é (¢?) = (Mg — m2)[Fo(a?)/F+ (g?) — 1]. The quality of the plateaus is pre-
sented in fig. 2. To that end we use the publicly available mbses of the SU(3) gauge field
configurations, produced by the QCDSF collaboration bygitfie &'(a)-improved Wilson quark
action withNg = 2 [5]. We computed the quark propagators and correlationtifoms on the con-
figurations gathered # = 5.29, corresponding ta ~ 0.08 fm, on the 22 x 48 lattice, each time
keeping the light valence quark mass equal to that of the s&k gin fig. 2 we see that the signals
for Ry andR; are indeed very good. The fact that the signalRgiis not as good does not trouble
the whole strategy because it is only needed to com@(é), which itself is a correction to 1 in
both eq. (2.6) and in eq. (2.4). On the other hand the factttieatjuality is less good fdR(t) is
expected as its computation involves the correlation fanctvith with “y"-matrices (mixing the
“large" and “small" components of the Dirac spinors), intast toRy 1(t) in which we compute
the correlation functions withyg"-matrix only.

2.2 Second and third strategies

Next we consider the kinematics in which we either keepDhmeson at restéy = 65 = 0)
and inject momenta to the pion sourd & 6,), or keep the pion at resé{ = 6 = 0) and inject
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Figure 2: Double ratiosRo 1 2(t), illustrating the first strategy. The lattice data referhte simulation with
Wilson &'(a)-improved quarks witiNe = 2 (8 = 5.29) andkq = Ksea= 0.1355. The shown signals refer to
o? ~ 1 Ge\l.

momenta tdD-meson @; = ). Notice that keeping the? fixed requires tha, = (mp /my;) x Gy
We then build the following four double ratios:

P (0 B, t> CDvor (ﬁ i) t> — CDvor (6, k’,t) P (k’, 6,t> Jateau

cor (o 0 t) CDP (B, pit) > covor (6,6,t) CDveD (R,R,t) o

c3® (0,p,t) 97 (p.0,t) pateas C (0,k.t) CI® (K.B.t) ey
T Ty TN~ (A Py Ly

wherep = 6,/L, andk = 6,/L. In terms of form factors, the above ratios read

2 [mD+E,T+(mD— En)f(qz)}z

2E2mp

[Ep + My + (Ep — mp)& ()]

R = 2m2Ep

[F+(q2)]27 Ry = [F+(q2)]27

2( 2 2( R
R = Bt e R () Ro= ke [, ()2, 28)
Note that UKQCD [6] recently considerd®; andR; to probeF~7(0). We now need to combine

the two of above four double ratios to obtdin(g?), namely eitheRs with R;, or Ry with R}, or R
with R, or R; with R4. In fig. 3 we show the quality of the signals correspondindnéogame set-up
as the signals displayed in fig. 2. We observe that dalyand R, are reasonably good, whereas
Rs(t) and R;(t) do not exhibit plateaus, likely due to the fact timas/my is large, so tha®; in

6. = (mp/my) x §q is such that the twBC simply destroys the signal. Therefoeewill retain the
ratiosR,s andR), which can be used to compute the form fadterg?) for various values off?.
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Figure3: lllustration of the signals for the double ratios used ingbeond, thirdRs, R4, R;, R,) and fourth
strategiesRs, Rg), defined in the text.

2.3 Fourth strategy

If one wants to study the shape of the form factor (i.e.gftslependence), then it is worth
trying to impose the twBC on the spectator quafk £ 0) without twisting the other two quarks
(6, = 6, = 0). In such a way we may probe many valuesfobut never reacl? = 0, because in
this set-up the conditioffp = E;; does not allow a real solution | = [k| = 85/L. To test this
option we consider the following two ratios:

CI°P (1) C3y®™ (1) plateau CHT () CIP (1) platea
™NoTT DVoD — K5, Cn\/in CDViD — R, (29)
Cap” (1)Cge" (1) 3 (DG (1)

where index 8" is used to distinguish that the spectator quark is actualigted. Expressed in
terms of form factors

[Ep+En+ (Ep — En)&(0?)]
2Ep2E,

The corresponding signals from our numerical study are shiowfig. 3. While the statistical
quality of Rs(t) is reasonably good, the signal fgg(t) is not promising if we are after a strategy
that could lead us to a percent accuracy on the extracted fmtor. Although we did not try it,
we suspect the flatness B could be achieved by a judicious choice of smearing. We pmifit
however, that our numerical evaluation of the ratios (hl)date the large statistical errors so that
this strategy is not competitive with the first or the thirceendiscussed in this section.

2
Rs =

[F(P)]?,  Re=[Fu(dP). (2.10)

3. Summary

It this note we report on the results of our exploratory studwhich we use various double
ratios and twisted boundary condition on the quark promagan order to extract the form factor
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Figure 4: D — T semileptonic form factors for the unphysically heavy piofeft panel corresponds to
m;; ~ 750MeV, the right one ton; ~ 600MeV

relevant to the semileptonic heavy-to-lightdecays to a percent accuracy. In total we proposed
four different strategies, which we then tested numesiaati the set of unquenchelN{ = 2) gauge
field configurations. On the basis of our analysis we concthdgthe first (double ratidRy 1 ») and
the third strategyRs andR),), discussed in the text, can be used to compute the formrfRcto?)
to a desired precision. Even though our numerical tests aderhy using the Wilson quarks, our
conclusions apply to any lattice QCD action.

In fig. 4, we illustrate the results obtained by employingfitst strategy at three values of the
twisting angleB. Those will be improved and the results discussed in ouhéorning paper.
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