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1. Introduction

Nonleptonic kaon decays present a number of major chalkerigiectCP violation in kaon
decays has been confirmed by the non-zero measuremerife ¢1, 2], but a quantitative theoret-
ical understanding, even within the standard model, islatking. TheAl = 1/2 rule also remains
a longstanding puzzle. Whilst these are weak decays, tbear energy scale is of the order of a
few hundred MeV at which non-perturbative QCD effects agaisicant making the evaluation of
the amplitudes difficult.

The lattice formulation of QCD together with large scale muital simulations provide the
opportunity to compute the non-perturbative effects framst forinciples. However, with the com-
puting resources which are currently available it is notsgae to perform the simulations directly
at the physical values @fi, andmy. Although the situation is rapidly improving, it is still likely
that computations with pion masses of about 140 MeV will bégomed in the near future. Itis
proving particularly useful in general, and for kaon decaygarticular, to use chiral perturbation
theory (xPT) to obtain physical results from simulations with heawialues ofm,q [3]. In this
approach, the QCD operators in the effective weak Hamdiom@ire written in terms of a sum of
operators composed of meson fields in the same chiral repiedie®. A priori, the coefficients of
the operators in the resulting Weak Chiral Lagrangian, the.low energy constantd_ECs), are
unknown. The aim is to determine the LECs from the mass andentarm dependence of matrix
elements computed in lattice simulations. This is well ustt®d forAl = 3/2 K — mrrrdecays in
which the two-pion state has isospip- 2. In this paper we focus ol = 1/2 decays in which the
two pions havd =0

At leading order inyPT, there are only a small number of LECs. For example, foA®e 1
operator in the(8,1) representation there are 2 LEQ&_ES’l) and aés’l), in terms of which the
K — mrr, K — mandK — vacuum matrix elements are:

(r oYK = (g al®, (L1)
<n+’ﬁ(871)“<0> _ 4?12f,| (al®V _ oY), 12)
<0| ﬁ<8~1>|K0> — %(mﬁ —m2)a®Y (1.3)

Thus by computing th& — T andK — vacuum matrix elementsyfz’l) can be determined and
theK — mirr matrix elements can be evaluated at leading order. Suchlatéms were performed
in 2001 with quenched ensembles and with meson masses about GD0 MeV [4, 5]. While
these calculations demonstrated the feasibility of theguiare, it is clear that, in addition to using
dynamical quarks it is necessary to perform simulationsghtér masses and to go beyond the
leading order in the chiral expansion in order to understiwed\l = 1/2 rule and the value of
¢’ /e. The increase in computer power since 2001 and Next-toihgadrder (NLO) calculations
in xPT [6-10], make it possible to contemplate such an endea¥ULO in xPT, the number
of LECs to be determined grows and it is not possible to deterrthem all fromK — 7T and
K — vacuum matrix elements alone.

One possible approach to the determination of the NLO LE@s c@mputeK — 77T matrix
elements. However, as explained in the following sectiberd are difficulties in studying two-
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pion states with isospin I=0. In this talk, we present anraliBve procedure for determining all
the necessary LECs at NLO, based on the evaluatioi®af- — 7 transitions (see sec.3). A
detailed analysis of this proposal will be presented in a&paghich is currently in preparation.

2. Difficulties in the Evaluation of K — (11r1), ¢ Matrix Elements

In this section we discuss the evaluationkof— it matrix elements and the difficulty en-
countered by the presence sthannel disconnected contractions. For illustratiomsater the
processk® — "1, studied inxPT in refs. [7,8]. Using the operator product expansion, the
amplitude can be written in terms of matrix elements of A&= 1 weak effective Hamiltonian
which contains 10 four-quark operatds (i = 1 — 10):

10
(1K) = 5 5 Van40) (RTQK), @.)

whereV/,, are appropriate combinations of CKM matrix element§y) are Wilson coefficients
andu is a renormalization scale. To demonstrate the ideas latnsider one of the operators:

Q1 = Sayu(1— ¥5)da UpyH (1 — ¥5)Up. (2.2)

The correlation function from which th€ — T transition is determined is

Ck—mm(ti,to,tr) = (0| O2n(tn) Qu(to) Ok (tk) |0) (2.3)
~ (0] O |mmt) (M Qy|K) (K| Ok | 0) e Ermltrto)g=Br(to—t) (2 4)

where in the last line we assume that the time interyalsto andto — tk are sufficiently large and
positive so that contributions from heavier states can lggented. Ok and &, are interpolating
operators for the kaon and two-pion states respectivelycdyputingCg_. - one can check the
validity of expected asymptotic dependence on the timevate in eq. (2.4) and extract the matrix
element(rtr1Qy |K).

The quark flow diagrams which contribute to the correlationction are sketched in Fig.1.
The number of quark propagators, and hence inversions dditiae operator, required to evaluate
these diagrams depends on the strategy as to which of the tiim& andt,; are chosen for the
sources. If we choose to alloty to vary, then we have to solve the problem of inserting the
guark propagator connectimg™ andr in diagram (A,B,C) in Fig.1. This requires as many quark
propagators as the number of time sliggdf instead we allovip to vary, the insertion of the loops
in diagrams (A) and (C) require a large number of inversidhgie fix bothto andt; then we are
not able to check the time behaviour of the two-pion stater&fit were possible to perform the
large number of inversions which are required to evaluatealthgrams, from experience we expect
that a very large number of configurations would be requioegvtluate thelisconnectedliagram
(C). Indeed one might try evaluating the diagrams usinghstsiic all-to-all propagators, but this
may be noisier.

We stress that the difficulties described above are techratteer than fundamental. They are
nevertheless delaying the evaluation of matrix elements twio-pion states in the 1=0 channel (in
the 1=2 channel only diagram (D) needs to be evaluated, whiotlatively easy).
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Figure 1: Quark contraction diagrams fér — 7T matrix elements. The grey circle represents the insertion
of a four-quark operator.
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Figure 2: Quark contraction diagrams for the propagator offitier state.

In order to extract the matrix elemefrirt|Q1|K) from Ck_, -, we need to divide by the overlap
factors, including0| ;| TT) (see eq. (2.4)). The evaluation @ &';,;|7t7T) requires the computa-
tion of the propagator of the 1=0 two-pion state, i.e. thd@aton of the diagrams in Fig. 2. This is
at least as challenging a task as that of@Re. r, with similar issues to the ones described above.

3. KO — m Matrix Elements

We start by stressing that our aim in this paper is limitechtodetermination of the LECs at
NLO in the chiral expansion, from which we evaluate Ke- 1T decay amplitudes at the same
level of precision. The key point is that it is possible to gute the LECs using any appropriate
external states; in particular it is not necessary to usepon states witH = 0. Our proposal
is to determine the LECs fahS= 1 Al = 1/2 operators by computing matrix elements for the



K — mtransitions Changhoan Kim

KO KO

W
¥

(A) (B)

KO

¥
Y

© (D)

Figure 3: Quark contraction diagrams f&7T — T transitions. The grey circle represents the insertion of a
four-quark operator.

(unphysical) transitioiK°71~ — 1 as well ask — mandK — vacuum matrix elements. In this
section we explain the advantages of this proposal; a ddtdimonstration that all the necessary
LECs can be determined from these transitions for a reat®msabof kinematic parameters will be
presented in a forthcoming publicatio®rr~ is anl = 3/2 highest weight state, and, as we shall
see below, this leads to a number of important simplificatiGanalogous to those present when
studying thd = 2 rirt state).

The correlation function correspondingKar — rrtransitions is

Crorr (o, tn) = (0|0 (tn)Qu(to) On- (tk ) Ok (k) | 0) (3.1)
~ (0| O |0 ) (10 |Qu|KOmr ) (KO | 6 O | 0) @ Erltn o) g Bnllo=t) - (3 2)

where 0, and 0+ are interpolating operators which can create or annihdate respectively.
The quark contraction diagrams corresponding to this m®eee shown in Fig.3; they have com-
mon topologies with those in Fig.1. The difference is thatfthal-stater™ in Fig.1 is nowcrossed
into the initial state where itis & . Thus, the quark line connecting” to 77~ in diagrams (A,B,C)
of Fig.1 now connectsr— to 1~ propagating frontk tot; in Fig.3. We can therefore vaty using

a small number of quark propagators, and hence check thepéstytnexponential behavior of the
K state.

What is more important is the absence of diagram such as (Eyih. Thes-channel discon-
nected diagram in Fig.1(C) now becomes tkehannel disconnected diagram in Fig.3(C). Such
t-channel disconnected contributions appear, for exampien studyindgk — i matrix elements
with an| = 2 rrr state. There have been several calculations-of2 it states [11, 12] and this
did not pose any problem.

A related advantage is that one can avoid the vacuum subtradtor anl = 0 final state at
rest, there is mixing with the vacuum state which must beragte#d®. In this case, the correlation

10ne can avoid the vacuum subtraction by consideringtinetate at non-zero momentum
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Figure 4: Quark contraction diagrams for the propagator ofkRer state.

function in eq. (2.3) contains the vacuum contribution,
(0]621]0) (0Qu|K®) (KO 6 [0) B lo~t) (3.3)

which must be subtracted in order to get Eq.(2.4). There isunh subtraction necessary in the
K — mcorrelation function.

Note also that the overlap facték®mr |0k Oy |0) can be calculated much more easily. Fig.4
shows the quark contraction diagrams. These are the sagralis which appear in the= 2 it
propagator which is calculated without any difficulty.

When evaluatind°r~ — 71~ matrix elements, we need to decompose the oper§poiisto
their Al = 1/2 andAl = 3/2 components. K — 7T transitions, the isospin transféyl is deter-
mined by isospin of the final stat&| = 1/2 if | ;;; = 0 andAl = 3/2 if |,y = 2. For theK®m —
transition, the isospin of the external states is alreadsdfiko, = 3/2, |- =1, bothAl =1/2
andAl = 3/2 transitions are allowed and therefore a basis of operatihsfixed isospin should
be used (see for example Appendix A of ref. [5]).

Since, for bottK — mmrandK 11— rrtransitions we have a two particle state, the finite-volume
effects are not exponentially small and should be takenantmunt [14]. Just as for thgtrm), -2
state, the lowest enerd¢®rr~ state(s) can be isolated and the standard techniques [ldai®e
applied. Energy, of course, must be injected at the opefatoich is also the case in practice in
K — mrtransitions).

The observation that the initi&gl°7r~ state is one of highest weight also means that one can also
envisage performing th€ T — m calculations in the (non-unitary) partially quenched Q@ihijch
is not the case for the standard extractioAbf 1/2 K — mrrrmatrix elements [13]. One might also
try to improve the precision of the determination of the LEB@®xtending the kinematical reach of
the calculations using partial twisting, which again is poessible folK — (7171),— transitions [17,
18].

4. Concluding Remarks

In this paper we have presented a suggestion for the detationinof the LECs necessary
for the evaluation of th&k — (7rm);—o decay amplitudes at NLO in the chiral expansion. Our
approach is based on the computatioftK8fi— — 7~ matrix elements (combined with — mand
K — vacuum matrix elements). We will demonstrate explicitlgttall the LECs can be determined
in this way in a forthcoming paper. We then have to developaotiife strategies for implementing
these ideas in numerical simulations and to investigatepgrewisely the LECs can be determined.
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In spite of the relative simplicity of our approach, therdlwe technical issues in its imple-
mentation; including the subtraction of power divergendesis well known, some of thAS= 1
four-quark operators mix with lower dimensional ones, iegdo ultra-violet divergences propor-
tional to inverse powers of the lattice spacing. The nunaéiscibtraction of the divergences at
leading order in the chiral expansion was performed in thenghed studies of refs. [4,5] and it
remains to be seen how accurately this can be done in dynksizalations at NLO in the chiral
expansion.
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