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1. Introduction

The CKM element/, is important for the phenomenology of flavor physics in determining
the apex of the unitarity triangle in the complex plane. For example, the Stakidalel prediction
of & depends sensitively o, (where it appears to the fourth power), and the present errors
on this quantity contribute errors & of the same size as those dueBg, the kaon mixing
parameter which has been the focus of much recent \fpfk [1, 2, 3]pdisisible to determing/c)|
from both inclusive and exclusive semilepto®aecays, and they are both limited by theoretical
uncertainties. The inclusive method makes use of the heavy quark expghdg], but is limited
by the breakdown of local quark-hadron duality, the errors of whiehdifficult to estimate. The
exclusive method requires reducing the uncertainty of the form fagrp-, which has been
calculated using lattice QCD in the quenched approximafipn [6]. Given theophenological
importance of this quantity we have revisited this calculatioggf,p- using the 2+1 flavor MILC
lattices with improved light staggered quarks [7]. The quenching errouseéliminated, and the
systematic error associated with the chiral extrapolation is reduced sigtlifica

This calculation was done using a blind analysis as follows: the perturbagomyticalcula-
tion needed to renormalize the lattice current was done separately froresthef the numerical
analysis, and the renormalization constants needed to compare resultsrantifttice spacings
to the continuum were given an overall offset which was not reveaiétithe systematic errors in
the rest of the numerical analysis had been determined.

2. Obtaining Vg

The differential rate for the semileptonic deddy- D*IV; is

2
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wherew = V - v is the velocity transfer from the initial state to the final state, #@ifa/)|.%g_.p+|?

contains a combination of four form factors which must be calculated manmpatively. At zero

recoil4(1) = 1, and.Zg_.p-(1) reduces to a single form factdr, (1). This is sufficient to deter-

mine|Vgp| from experiment. Heavy quark symmetry plays an important role in constedinjiil),

leading to the heavy quark expansiph([[8, 9]
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ha, (1) = Na|1—
(2.2)

up to order Ir'r% and wherena is a factor which matches QCD and heavy quark effective theory
(HQET). Thel’s are long-distance matrix elements of the heavy quark effective th€beyearlier
work by the Fermilab lattice collaboratio[] [6] used a series of three doultibs ia order to obtain
separately each of the thre;érf% coefficients in Eq[(2]2). These three double ratios also determine
three out of the four coefficients appearing atr% in the heavy quark expansion. It was shown
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in [[LQ] that for the Fermilab method matched to tree levebrinand to leading order in HQET,
the leading discretization errors for the double ratios for this quantity avedefas(A/mg)? and
A/,

In the calculation reported here, the form fadbar(1) is computed more directly using only
one double ratio,

D*[cy; ysb|B) (B|by; ysc|D*
s, = (D ICHEDBBIIRCDT) _ 1, (. 23)
(D*[cyac|D*) (B|bysb|B)

which is exact to all orders in the heavy quark expansion (modulo disatietizerrors for the
corresponding lattice ratio). The errors in this ratio do not rigorouslyesaa% — 1 because
Eqg. (2.B) is not one in the limit of equal bottom and charm quark massescgines one only
in the static quark limit). Nevertheless, this double ratio still retains the desirasalarés of the
previous double ratios, i.e. large statistical error cancellations, and tieelition of most of
the lattice current renormalization. The quenching error has been elimibgtattluding the
fermion determinant in the weighting of the gauge configurations, and sdgihv®us scaling of
all the errors agZ — 1, including the quenching error, is no longer as important. The more direct
method introduced here has the significant advantage that extractifigieoés from fits to HQET
expressions as a function of heavy quark masses is not necesshng arror is introduced from
truncating the heavy quark expansion to a fixed order/ rn”Ql

Most of the current renormalization cancels in the lattice double ratio, leanfhga small
correction factorp, defined such thai/Rat = v Zcont = h(1), as discussed iff [11]. Thisfactor
has been calculated perturbatively][12], and was found to contributétas a (6% correction.

3. Lattice calculation

The lattice calculation was done on the MILC lattices for three lattice spacags((15,
0.125, and M9 fm) where the light quarks were computed with the “AsqTad” staggerBdma
The heavy quarks were computed using the clover action with the Fermilapretition in terms
of HQET [[L3]. We have several light masses at both full QCD and partelignched points
(Myalence# Mseg), and our light quark masses range betweg/il0 andms/2.

Extracting correlation functions that contain staggered quarks prememtstra complication
because of the contributions of wrong parity excited states which introosci#ations into the
usual plateau fits. The average,

1 1 1
Cag (0.1, T) = ECXHY(O,t,T) + 21CX*Y(o,t,T +1)+ 21CXHY(o,t +1,T+1), (3.1)

is equivalent to a smearing which suppresses the oscillating states, abddmaapplied to all of
the data for the double ratios. Figufé (3) shows a plateau fit to the doufdeusd to obtain
ha,(1). The source is at time slice 0, the sink isTatand the operator position is varied along
t. Two different extended propagators were constructed at evendohgdource sink separations
(T = 16,17). The average of these two extension points was taken according @.1)q and this
average was fit to a constant as shown in Figure 1. There is no deteasablation even before
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Figure 1: Double ratio on then, = 0.0124 fine ensemble. The source was fixed to time slice 0, and the
operator position was varied as a function of time. Two défg sink (extension) points were used with
even and odd time separations between source andG{okt[T) andC(0,t,T + 1)] in order to study the
effect of non-oscillating wrong parity states. The fit ishe taverage of the source sink separations given in
Eqg. (3.1).

the average is taken; the oscillating contributions are reduced evenrfurttiee average so that
their systematic errors can be safely neglected.

The chiral extrapolation errors can be controlled by using the apptepaated staggered
chiral perturbation theory (p@T) for heavy light quantitie [14]. Eq. (34) df]15] gives the ex-
pression needed for fits tgy, (1) for partially quenched data with degenerate up and down quark
masses (the 2+1 case). This partially quenched expression paransetieeizkependence on both
valence and sea quark masses, and includes taste breaking violationg éamirthe light quark
sector. The expression contains explicit dependence on the latticegpaaimd requires as inputs
the parameters of the staggered chiral lagrang@{and,, in addition to the staggered taste split-
tingsApaTv,. These parameters can be obtained from chiral fits to the pseudoszatarand are
held fixed in the chiral extrapolation bk, (1). The continuum low energy constagy:p,; appears,
and this can be taken from phenomenology; we take a generous ramgkies for this term to
estimate the error it contributes kg, (1). The only other parameter which appears at NLO is an
overall constant that is determined by a fit to our datahfQ(1).

For the chiral fits we find it useful to form two ratios that normalize resultshfg(1) at a
“fiducial point,”

hAl(rnﬂda m_, M, a)

- - . s
hAl (rn]:éd7 mEd7 meId’ a)

h ,m, Mg, a
Ry (ML, M, ) — Mo M, Ms 2

Rses(m., Mg, @) = - i ’
sea( L, 1S, ) hAl(rnQd,mbmSa)

(3.2)

where fid stands for fiduciafy is the light valence quarky_ is the light sea quarknsis the strange
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Figure 2: All of the data at the full QCD pointsf,aence= Mseg) ON the three lattice spacings. The cyan
(light grey) band is the continuum extrapolated full QCDwurThe cross is the value at the physical light
pion mass, where the solid line is the statistical error, taeddashed line is the total systematic error added
to the statistical error in quadrature.

sea quark. Here we takgl? ~ 0.5mlioca, mid ~ 0.5mEece, andmid ~ m%eca The ratios in
Eq. (3.2) are now quadruple ratios; thus the statistical errors and estéecontamination are
further suppressed over that of the double ratio. The main advantagesaf ratios, however, is
that heavy quark discretization effects largely cancel, so that we cantdigyle the heavy quark
discretization effects and those of the staggered chiral logs. This istiatesscretization effects
coming from non-analytic taste violations, and these can be removed ugiR{ r®/e have chosen
the fiducial point to bex 0.5mE%ca because it would be feasible to simulate this mass point on
very fine lattices and smaller volumes without running into finite size effects,rtbtmalizing our
data at a point where the heavy quark discretization effects are much isnfadienow we use
the point withm ~ O.Snﬁgﬁgg'on the finest lattice spacing availabke~ 0.09 fm) as our fiducial
point. By taking the chiral extrapolation and the continuum limit of the two ratiodtjphying them
together and then multiplying that by the valuenaf(1) at the fiducial mass on the finest available
lattice spacing, we can construct the value of the form factor at the @ygjot quark mass,
h,&’?ysz h/iild % [RsedmP™S mEM™S 0) x Ry (MP™S mg™S 0)]. This quantity is shown in Figure 2.

4. Resultsand conclusions

The final error budget is presented in Table 1. The error labeligeh;; uncertainty” comes
from the error in the chiral low energy constaptp,;, which we take to vary between 0.3 and 0.6.
The next error is the difference between doing NLO chiral fits for theatkxtrapolation, versus
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Figure 3: The values foha, using the continuum extrapolated ratios determined in thecial point proce-
dure to extrapolate the fiducial points on each of the thitiedespacings to the physical light quark masses.
The fiducial point procedure allows us to remove the tastitians coming from staggered chiral logs, but
it does not remove the analytic terms associated with the tigark sector, nor does it remove the heavy
quark discretization errors. Although it is appropriatextrapolate this curve to the continuum, a first prin-
ciples extrapolation formula is not known. We therefore pane the value dfia, using the fiducial point on
the fine lattice with the results obtained by using fiducidhpon coarser lattice spacings. A comparison
of the scatter of these results allows us to estimate theasitee remaining light quark and heavy quark
discretization errors.

fits which include the NNLO analytic terms but not the 2-loop logarithmic terms, whave not
been calculated. Both fits give acceptable confidence levels.

Our largest systematic uncertainty comes from discretization errors. dunadi point proce-
dure described above allows us to remove the effect of the splittings in tygesea chiral logs,
but it does not determine and remove the analgtidependence in the light quark sector, nor the
heavy quark discretization errors. Comparing the values obtained witdreatiff fiducial points on
various lattice spacings gives an estimate of the size of the remaining ligt giuduheavy quark
discretization errors. The scatter of the points in Figure 2 gives an estirhttie size of these
effects, which cannot be resolved within statistics. The difference leetthe fine & = 0.09 fm)
and coarseq = 0.12 fm) lattice spacings is a3% difference, which is about the size one would
expect for heavy quark discretization errors in this quantity from paeanting arguments and a
reasonable choice for the HQET parameter

The error labelled “kappa tuning” comes from the parametric uncertaistyceged with tun-
ing the charm and bottom quark masses. The next error is from the lpstingr matching of the
lattice currents in the double ratio. As mentioned above, this renormalizatitor facsmall be-
cause most of the renormalization cancels nonperturbatively in the ratitaké&/¢he entire 1-loop
correction of 04% as a conservative estimate of the error due to the omission of highes.orde
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Table 1: Error budget

uncertainty ha, (1)

statistics 12%

Op+pr Uncertainty 6%

NLO vs partial NNLO ChPT fits ®%
discretization errors 3%
kappa tuning 0%
perturbation theory 8%

Total 23%

We quote a preliminary result for the form factiok, (1) = 0.924(12)(19), where the first
error is statistical, and the second is the sum of all systematic errors inaguidr Taking the
latest world average of7 (1)|Vep| = (36.040.6) x 10-2 from experiment[[16], we findVep| =
(38.7 £ 0.7exp = 0.9heo) X 10-3. We estimate that the theoretical error on this determination of
IVep| from exclusiveB — D*¢v can be reduced significantly by making use of the existing extra-
fine MILC lattices & = 0.06 fm) and higher statistics on the coarser ensembles.
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