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1. Introduction

CP violation is now a well established property of Nature, having been observed in both kaon
and B meson systems. Its standard model explanation, that the violation arises from the difference
between the mass and weak interaction eigenstates of the quarks, is quantitatively encapsulated
in the unitary3×3 Cabbibo-Kobayashi-Maskawa (CKM) matrix which relates these eigenstates.
Determining the elements of this matrix is the subject of extensive theoretical and experimental
effort. However, even assuming precise values for the elements of the CKM matrix, a prediction
for the rate of direct CP-violating decays in kaons, determined experimentally by measuring the
quantity Re(ε ′/ε), is lacking. Such a prediction relies on values for the hadronicK→ ππ matrix
elements of low-energy, four-quark operators. Lattice QCD is the only first principles method to
allow determination of these matrix elements and their measurement has been the subject of many
studies. In this note, we discuss our progress in determining these matrix elements, using full 2+1
flavor QCD with domain wall quarks.

Euclidean space lattice methods for the direct evaluation of the desiredK → ππ matrix ele-
ments have been developed, and some preliminary studies have been performed [1, 2]. However, to
reach physical values for the kaon and pion masses in full QCD simulations is beyond the reach of
current computers. Here we follow the long-standing approach of using chiral perturbation theory
to relateK→ ππ matrix elements to matrix elements of the same operator measured inK→ π and
K→ 0 matrix elements [3]. Quenched calculations have been done with this approach [4, 5], which
showed that with DWF, the problems of lower dimensional operator mixing at finite lattice spacing
and renormalization of the operators were under good control. Statistically well resolved values
for the lowest order chiral perturbation theory constants were achieved and, by naively extending
lowest order chiral perturbation theory to the kaon mass, physical results were quoted.

However, for these particular kaon weak matrix elements calculations, it was pointed out that
quenching makes the relation between the full QCD chiral perturbation theory constants and the
quenched ones ambiguous [6, 7, 8], providing a source of uncertainty in interpreting the quenched
calculation that is more serious than the general caution that must be exercised with quenching. In
the current 2+1 flavor calculation, these ambiguities are removed.

To date, our calculation involves measuring the same operators as in our previous quenched
calculation [4], although on larger volume lattices, with 2+1 dynamical flavors and with much
lighter valence quark masses [9, 10]. With these valence masses, we see that next-to-leading order
(NLO) SU(3) chiral perturbation theory for pseudoscalar decay constants and masses [11], and
the pseudoscalar bag parameterBPS (the analogue ofBK with two light quarks in the “kaon")
[12], represents the lattice data at the≈ 5% level or better. Thus we can try similar NLO chiral
perturbation theory fits to the data presented here, which covers a similar range of pseudoscalar
masses, in the hopes of extracting the desired low energy constants. These fits require the 2+1
flavor partially quenched chiral perturbation theory formula for our matrix elements, a calculation
which is underway [13].

We also discuss the status of our calculation of the non-perturbative renormalization Z factors
needed to convert our lattice results toMS conventions.
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Figure 1: The contractions used in the evaluation of the∆S= 1 operators that have been calculated in this
report. The sources for the kaons and pions are Coulomb gauge fixed wall sources and the closed fermion
loop contractions are calculated with stochastic sources.

2. Simulation Details

We have measured the 10∆S= 1operators needed for a determination ofε ′/ε and the∆I = 1/2
rule, using the notation of [4]. When evaluated betweenK+ andπ+ states, the operators produce
the contractions shown in Figure1. The contractions between kaons and pions are known as figure
eight diagrams and eye diagrams. We also need vacuum diagrams and contractions involvings̄d, to
remove the mixing with lower dimensional operators. We use Coulomb gauge fixed wall sources at
t = 5 and 59 on our243×64×16lattices as the sources for the kaons and pions. The Dirac equation
is solved twice for each wall source, once with periodic and once with anti-periodic boundary
conditions, and the two solutions added to effectively double the length of the lattice in the time
direction. Our operator contractions are always done with5≤ top≤ 59, wheretop is the time where
the operator is evaluated, so the double lattice merely serves to suppress any contributions to our
operators from propagation around the world in the time direction.

For the closed fermion loops in the eye andK → 0 contractions, we use a stochastic source,
spread over the spatial volume and covering all time slices from 12 to 51 (40 time slices). A single
stochastic source is a fixed spin and color component, with a space-time value that is Gaussianly
distributed. For each spin and color combination, solutions are found for four different stochastic
space-time distributions.

For each configuration, 6 valence quark masses are used:mf = 0.001, 0.005, 0.01, 0.02, 0.03,
0.04. The residual quark mass from the finiteLs extent of our lattices is 0.00315(2) [11]. These bare
quark masses correspond to pseudoscalar masses ranging from 250 MeV to 750 MeV. From fits to
pseudoscalar masses and decay constants, we find that for the three lightest bare quark masses
(0.001, 0.005 and 0.01), NLO chiral perturbation theory agrees well with our measured data.

For each configuration, we do 8 full (all spins and colors for the source) five-dimensional
solutions to the Dirac equations for each valence mass. Each wall source requires 2 solutions (one
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Irrep Number Isospin K+→ π+ K0→ π+π−

(27,1) 1 1/2, 3/2 −4m2
M

f 2 α(27,1) − 4i
f 3 m2

K0α(27,1)

(8,1) 4 1/2 4m2
M

f 2 (α(8,1)
1 −α(8,1)

2 ) 4i
f 3 m2

K0α(8,1)
1

(8,8) 2 1/2, 3/2 −12
f 2 α(8,8) −12i

f 3 α(8,8)

Table 1: The relation between matrix elements and low energy constants, to lowest order in chiral perturba-
tion theory. The second column gives the number of different operators transforming as the given irreducible
representation.

for each boundary condition) and we do four stochastic estimators for the closed fermion loops.
Thus we spend half of the time on the wall source inversions and half on the stochastic inversions.

The results reported here are for 76 configurations, separated by 40 molecular dynamics time
units, for our ensemble with light dynamical quark massml = 0.005and 74 configurations, with
the same separation, forml = 0.01. To do these 8 full inversions for the six valence quark masses
on a single configuration takes about 24 hours on a 4,096 node QCDOC partition, with the lightest
valence quark mass taking about half of the total time.

3. Chiral Perturbation Theory and Ward Identity Test

In the 3 flavor effective theory that comes from integrating out the charm, bottom and top
quarks (as well as the weak vector bosons), the effective Hamiltonian for∆S= 1 transitions is

H (∆S=1) =
GF√

2
VudV

∗
us

{
10

∑
i=1

[zi(µ)+ τyi(µ)]Qi

}
(3.1)

Herezi(µ) andyi(µ) are Wilson coefficients and theQi are four-quark operators. Of the ten four-
quark operatorsQi above, only seven are independent, and they include three representations of
SU(3)L×SU(3)R: (27,1), (8,1) and (8,8). In lowest order chiral perturbation theory, the desired
K → ππ matrix elements are all proportional to an appropriate low energy constant, denoted as
α(8,1)

1 , α(27,1), or α(8,8). These come fromK → π andK → 0 matrix elements as given in Table

1. Note that for the (8,1) operators, to determine the physically relevant quantityα(8,1)
1 requires

remove the power divergent quantityα(8,1)
2 , which is measured inK→ 0 matrix elements

To accurately determine the leading order chiral perturbation theory constants, we want to try
to fit our matrix element data to the full partially quenched 2+1 flavor formulae. Calculations of
these formulae are underway [13], and when they are complete, we will fit our data to them in our
efforts to extract the best values for theα ’s.

Since NLO chiral perturbation theory plays such an important role here, we turn briefly to a
simple matrix element〈π+|s̄d|K+〉 that is known in chiral perturbation theory and that also enters
our calculation. At leading order in chiral perturbation theory, one has

2mf

m2
π
〈π+|s̄d|K+〉−1 = 0 (3.2)
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Figure 2: A plot of the appropriately scaled〈π+|s̄d|K+〉 versus valence quark mass. When the valence and
sea quark masses are equal, the curves should go to 1.

We calculate this from the ratio of a three point function to two, 2-point functions as

R2≡
〈Pwall

π+ (x0) [s̄d](y)Pwall
K− (z0)〉

〈Pwall
π+ (x0)Pwall

π− (z0)〉
(3.3)

HerePwall
π+ is a wall Coulomb gauge fixed pseudoscalar wall source with the quantum numbers of

theπ+. R2 differs from〈π+|s̄d|K+〉 by known factors.
Figure2 shows a plot of the appropriately scaledR2 versus valence input quark mass for the

current 2+1 flavor full QCD ensembles and the same results for our earlier quenched ensemble. In
the limit mf →−mres and the light sea and valence quarks are equal, the curves should go to 1.
We can see that there is noticeable curvature in the graphs for quark masses below 0.01 and there
is a small dynamical quark mass effect when comparing theml = 0.005and 0.01 ensembles. This
is certainly the region where partially quenched chiral logarithms should be noticeable, and are
seen in our other observables, but fits to the precise formulae (when available) will be required to
sharpen this general statement. ForBPS [12] we do see that the partially quenched logarithms have
a curvature that is opposite the curvature when the valence and sea quark masses are the same. Also
note that the curvature is much more noticeable in the dynamical ensemble data than the quenched
results and that the valence masses in the current work are much lighter than the earlier quenched
work.

4. ∆I = 3/2 Matrix Elements

We now turn to the∆I = 3/2 matrix elements and present some of our lattice data. The 3/2
part ofQ2 andQ8 are presented in Figure3. We see at once that we have very long plateaus which
extend, with essentially uniform errors, across the lattice. We choose to fit the plateau fromt = 12
to 51, i.e. starting from a distance of 7 away from the two wall sources. Clearly with such long

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
5
9

Kaon Weak Matrix Elements in 2+1 flavor DWF QCD Robert D. Mawhinney

10 20 30 40 50
t

0

0.0005

0.001

0.0015
〈π

+  | 
O

2(3
/2

)  | 
K

+
〉

(a)

10 20 30 40 50
t

-0.06

-0.05

-0.04

-0.03

-0.02

〈π
+  | 

O
8(3

/2
)  | 

K
+

〉
(b)

Figure 3: Plateaus for the∆I = 3/2 part of theK→ π matrix elements ofQ2 andQ8. ForQ2 (left panel) the
valence masses run from the largest (top points) to the smallest (bottom), while forQ8 (right panel) they run
from the smallest (top points) to the largest (bottom). The pseudoscalars have degenerate quark masses.

plateaus the results are not sensitive to the precise fit range chosen. The average value, with error
bars, for each mass is indicated by the horizontal lines on the graphs.

In Figure4, we present values forQ(3,2)
2 as a function of valence quark mass for our previous

quenched calculation (left panel) and theml = 0.005lattices from our current ensemble. Note the
much smaller range of quark masses plotted in the 2+1 flavor QCD case. In our earlier quenched
work, we saw no strong indication of quenched chiral logarithms, but found a large contribution
from the analytic NLO terms. We do not yet have the chiral perturbation theory formulae for the
2+1 flavor case, nor the fits to the data. However, one can see that some downward curvature is
needed to have the extrapolated matrix element vanish at the origin, as required by chiral symmetry.
Also, for these much smaller valence quark masses, one does not readily see a noticeable effect of
higher order analytic terms.

5. Weak Matrix Elements in the (8,1) Representation

5.1 (8,1) Operators

Among the 10 weak operators involved in theK → ππ process below the charm threshold,
Qi {i = 3,4,5,6} are pure (8,1)∆I = 1/2 operators, whileQi {i = 1,2,9,10} have both (8,1),∆I =
1/2 and (27,1),∆I = 1/2 parts. The (8,1) operators are particularly important for the investigation
of CP violation, since, from the size of the Wilson coefficients at 2 GeV, the matrix element ofQ6

is dominant inIm(A0) [4].

Since the∆I = 1/2 operators can mix with the quadratically divergent operatorΘ(3,3̄) ≡
s̄(1− γ5)d, theirK→ π matrix elements alone cannot determine the relevantK→ ππ elements. It
is necessary to evaluate theirK→ 0 matrix elements to remove the unwanted contributions.
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Figure 4: A comparison of the lattice normalized matrix elements for our earlier quenched calculation (left
panel) and the current 2+1 flavor calculation (right panel).

5.2 Plateaus ofK→ π for (8,1) Operators

As mentioned earlier, we evaluate the value of〈π+ |Qi |K+〉, by placing Coulomb gauge fixed
wall sources attK = 5 andtπ = 59. The eye contractions that appear in (8,1) operators are deter-
mined with random sources with support fromtrand = 12 to 51. We can then evaluate the operator
contribution from any timeslice given bytop with 12≤ top≤ 51. By taking the ratios of the three-
and two-point pseudoscalar-pseudoscalar Green’s functions we calculate the required matrix ele-
ments [4]. As an example, Figure5 shows the plateaus for〈π+ |Q6|K+〉. With either degenerate
or non-degenerate valence masses, we have very long plateaus (40 time-slices). Comparing these
graphs with the plateaus in Figure3, we see that the error bars here, after averaging over time slices
(black horizontal lines) are smaller than the error bars for the individual points. Such an effect is
not very noticeable in the∆I = 3/2 amplitudes of Figure3.

5.3 Resolving Quadratic Divergence withK→ 0 Matrix Elements

As explained earlier, we need to calculate theK→ 0 matrix elements for∆I = 1/2 operators
to remove the mixing with lower dimensional operators. For the (8,1) operators, we determine a
mixing coefficientη1,i as in [4] by calculating

〈
0
∣∣∣Q(1/2)

i,lat

∣∣∣K0
〉

〈0|(s̄γ5d)lat|K0〉 = η0,i +η1,i (ms−md) (5.1)

where the valence quark masses havems 6= md. Again usingQ6 as an example, Figure6 shows the
plateau of theK→ 0 matrix element in the left panel and the result of fitting to Eq.5.1above. One
sees that the data shows a very accurate linear dependence onms−md, which is expected since the
quadratically divergent part ofQ6 dominates the numerator and it is proportional toms−md. Since
Q6 has the largest divergent contribution, its matrix elements show the best linearity. For other
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Figure 5: Plateaus of〈π+ |Q6|K+〉 with msea= 0.005. Figure (a) has degenerate valence masses (md =
ms = 0.001) and Figure b) has non-degenerate valence quark (md = 0.001, ms = 0.005). In both cases, the
matrix elements have long plateaus.

operators, with a smaller divergent part, the linearity is less good, but also the required cancellation
in the subtraction of the divergent part is less stringent.

5.4 Subtraction of the Quadratic Divergence

After calculating the mixing coefficientη1,i , we use it to subtract the quadratically divergent
contribution of〈π+ |s̄d|K+〉 from the raw matrix elements [4].

〈
π+

∣∣∣Q(8,1)
i

∣∣∣K+
〉

sub
≡

〈
π+

∣∣∣Q(8,1)
i

∣∣∣K+
〉

+η1,i (ms+md)
〈
π+ |s̄d|K+〉

(5.2)

=
4α(8,1)

1

f 2 mKmπ +(chiral logs)+(analytic terms) (5.3)

where the second line is the prediction of the chiral perturbation theory. (The cancellation of
the power divergences is true without reference to chiral perturbation theory.) While we have
begun fitting to next-to-leading order 2+1 flavor partially quenched chiral perturbation theory, the
formulae are still being checked, so we have also experimented with simple leading order fits.

Figure7(a) shows the subtraction process forQ6. SinceQ6 is the most divergent, the sub-
traction term (green squares) is very close to the unsubtracted matrix elements, and thus a precise
determination of the subtraction term is vital. (This was also the case in the quenched calcu-
lations.) In Figure7(b), we show the subtracted matrix elements〈π+ |Q6|K+〉sub, including all
non-degenerate combinations of valence masses(md, ms), and also the result of fitting them to the
leading order term in chiral perturbation theory,mKmπ . The plots show that the data fit the lead-
ing order theory very well. Of course, here our error bars are larger than for the∆I = 3/2 matrix
elements and modest chiral logarithm effects are consistent with the apparent linearity of our data
and our error bars. It remains an open question as to whether we can achieve statistical accuracy
for the subtracted (8,1) operators that is the same size as the predicted effects of chiral logarithms.
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Figure 6: Calculating mixing coefficient between four-quark operators ands̄d using the ratio〈
0
∣∣∣Q(1/2)

i,lat

∣∣∣K0
〉

/
〈
0|(s̄γ5d)lat|K0

〉
. Figure (a) shows the plateau of the matrix element withmsea= 0.005,

md = 0.001, andms = 0.005. Figure (b) shows the results of fitting to(ms−md), which reveals a nice linear
structure.

Due to the existence of power divergences and the fact that the residual chiral symmetry break-
ing effects in divergent amplitudes are not strictly proportional tomres , the subtracted matrix ele-
ments do not have to vanish at the chiral limit [4]. (Recall that the physical quantity of interest is
the slope of the subtracted matrix elements.) Rather, at the chiral limit, their deviation from zero
should be anO (mres) effect. In Figure7(b), the top line does not usemres in the subtraction process
(Eq.5.2), while the bottom line does subtraction withmsea. As these two lines bracket the zero point
at the chiral limit, the above expectation is verified.

5.5 PQS vs. PQN

As we work in the 2+1 flavor partially quenched theory, there are different methods to make
contractions with the four-quark operators which have a singlet piece,i.e. PQS vs. PQN [8, 14, 15,
16]. The operatorsQi {i = 3,4,5,6} all have a singlet part in their operator definition,

Qi ≡ (s̄d)L ∑
q∈{u,d,s}

(q̄q)L or R. (5.4)

When evaluating their weak matrix elements on our partially quenched lattices, we may either keep
the singlet structure of the operator, such that the summation will become a sum over all valence,
sea, and ghost quarks, or we only sum over the valence quarks as we shall do in full QCD. The
former, as we keep the singlet property, is called the PQS (partially quenched singlet) method,
while the latter is called the PQN (partially quenched non-singlet) method.

On the quark level, calculating the weak matrix elements of the above operators requires the
evaluation of the three quark-flow diagrams shown in Figure8. The only difference between PQS
and PQN is in diagram (b). With the PQS method, the summation on the quark self-contraction (the
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Figure 7: Subtraction of quadratic divergence fromK→ π matrix elements. Figure (a) shows the subtraction
process for degenerate valence massesmd = ms. It is clear that for the divergent operator, the physical
quantity is very sensitive to any noise in the matrix elements. Figure (b) fits the subtracted matrix elements
〈π+ |Q6|K+〉sub with all available pairs of non-degenerate valence masses to the leading order termmKmπ .
The upper line does not usemreswhile on the lower line each subtraction has usedmres. Both figures present
the data ofmsea= 0.005ensemble.

s d

u u

K TT

(a)

ds

u

TTK u,d,s

(b)

d

u

s

K TT
d,s

(c)

Figure 8: Quark flow diagrams needed to evaluate the weak matrix elements forQi {i = 3,4,5,6}. A
connected line represents a trace over spin indices. Only diagram (b) has differs between the PQS and PQN
method. With the PQS method, the quark loop (red) will be constructed from sea quarks, while with the
PQN method, it will be constructed from valence quarks.

red quark loop) will go over all valence, sea, and ghost quarks (and since valence loops cancel with
ghosts, only the sum over sea remains). With the PQN method, the sum will go over the valence
quarks only.

We have calculated the subtracted matrix elements with both the PQS and PQN methods (Table
2). The comparison of the slope of the subtracted matrix elements (w.r.tmKmπ ), which is the
leading order coefficient for (8,1) operators, shows small differences between the two methods.
We see that this ambiguity does not affect the chiral fits significantly on our 2+1 flavor partially
quenched lattices.
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Slope of〈π+ |Qi |K+〉sub 3 4 5 6

PQS 0.0009(37) 0.0383(27) −0.0626(53) −0.183(13)
PQN −0.0042(38) 0.0373(34) −0.0638(55) −0.165(14)

Table 2: Comparison between the PQS and PQN methods of the slope of the subtractedK → π matrix
elements (w.r.tmKmπ ).

6. Non-perturbative Renormalization for ∆S= 1 Operators

6.1 NPR Procedure

To convert the bare lattice quantities into the continuum scheme, we have employed the Rome-
Southampton non-perturbative renormalization prescription [17]. Following the procedure as de-
scribed in ref. [4], we write the NPR formula as

Ocont, ren
i (µ) = ∑

j

Zi j (µ)

[
Olat

j +∑
k

c j
k (µ)Blat

k

]
+O (a) (6.1)

whereOi are the dimension 6 operators, andBk are the lower dimensional operators. The NPR cal-
culation is done on163×32×16lattices [18] which have been generated with the same parameters
as our243×64×16 lattices, except that the lightest dynamical quark mass on the smaller volume
is 0.01.

To simplify the computation, we have eliminatedQ4, Q9, andQ10 from the 10-operator basis,
since they can be written as linear combination of the other operators [4]. Further, we rotate the
remaining 7-operator basis such that each operator is in a distinctSU(3)⊗SU(3) representation.
The transformation relation can be found in ref.[4]. The new set of operators is denoted asQ′i .

6.2 Resolving the Mixing with Lower Dimensional Operators

To resolve the mixing between the four quark operator and the lower dimensional operators,
we consider the two most divergent lower dimensional ones [4]:

B1≡ s̄d

B2≡ s̄
(
−←−/D +ms

)
d+ s̄

(−→
/D +md

)
d. (6.2)

To compute the corresponding mixing coefficientsci
1 andci

2, we have used two conditions

Tr
[〈

s(p)Osub
i d̄(p)

〉
amp

]
= 0

Tr
[
i/p

〈
s(p)Osub

i d̄(p)
〉

amp

]
= 0 (6.3)

with propagators evaluated at unitary masses (md = ms = msea).

6.3 Resolving the Mixing between Four-Quark Operators

To determine the mixing coefficient between the 7 operators in the new basis, we construct a
set of external quark combinationsE j

αβγδ [4]. Then we impose the renormalization condition that

1
Z2

q
ZkiΓ j

βαδγ

〈
Osub

i E j
αβγδ

〉
amp

= Fk j (6.4)
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Figure 9: 4 out of 248 quark flow diagrams with their corresponding factors involved in the calculation
of the mixing coefficients betweenQ′1 andQ′1. The solid lines represent quark propagators and each loop
formed by solid and dashed lines represents a trace over spin and color indices.

whereΓ j
βαδγ is the projector corresponding to the spin and color structure of the operatorj, and

there is no sum overj in the above equation. On the r.h.s,Fk j is the free field limit of the matrix
Γ j

βαδγ

〈
Osub

i E j
αβγδ

〉
amp

. Z1/2
q is the quark wavefunction renormalization factor [19].

The calculation of the combinationΓ j
βαδγ

〈
Osub

i E j
αβγδ

〉
amp

requires evaluation of the many

quark flow diagrams that can possibly be constructed with the relevant operator and the external
quark combination. Figure9 shows 4 out of 248 quark flow diagrams involved in the evaluation
of renormalization coefficient forQ′1. Each diagram is evaluated at unitary quark mass and non-
exceptional external momentap1 andp2 wherep2

1 = p2
2 = (p1− p2)

2 [4].
After the evaluation of the entire matrix of mixing coefficients, we remove the coefficients

that are both theoretically suppressed and statistically zero, and then fit the remaining matrix to a
unitary mass dependence (Figure10(a)). Since one of the lower dimensional mixing coefficients,
ci

1, is expected to have the mass dependencem/a2 at leading order, this step will automatically
removeci

1. Then the subtraction of the other,ci
2, is performed. Due to its small magnitude, this

subtraction does not make big differences in the final result (Figure10(b)).

7. Conclusions

We have discussed the status of measurements ofK→ π andK→ 0 weak matrix elements on
243×64, 2+1 flavor dynamical domain wall lattices by the RBC and UKQCD collaborations. We
are working at much smaller masses and larger volumes than earlier quenched calculations and,
with the 2+1 flavor ensembles, we are free of quenching errors. We find good statistical errors and
long plateaus for our measured matrix elements and the subtraction of power divergent operator
mixing contributions to (8,1) operators works as expected. We find that the ambiguity between
the PQS and PQN methods is removed. The non-perturbative renormalization of our operators,
following the Rome-Southampton prescription, is essentially complete. We await the completion
of the NLOPQχPT formulae for these matrix elements, and preliminary fits are underway. The
accuracy and stability of these fits will play a large role in determining our final errors.
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Figure 10: Evaluation of the mixing coefficients between four quark operators. Figure (a) shows the linear
mass fit of the mixing coefficientZ−2

q Z1,1. Figure (b) shows the final value ofZ−2
q Z1,1 at 5 different momen-

tum scales where we have sufficient pairs of non-exceptional momenta(p1, p2) to evaluate the quark flow
diagrams. Also in Figure (b), we show a comparison between linear and quadratic mass fits, as well as a
comparison between the values before and after the subtraction ofci

2. It is clear that the differences are not
significant.
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