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1. Effectivetheory

Quantum gravity is a “fundamental” theory formulated atrextely high energies which, for
most practical applications, needs contact with low emsrgind thus phenomenology. A widely
used tool to achieve this is that of effective equations. hSeguations provide useful approxi-
mations, but not to the whole quantum theory. They rathecritss certain regimes, such as low
energy ones, and thus require additional information onmggions to select such a regime. For
instance, one needs to know some properties of a suitablehangy state, such as the vacuum
of the theory. Once this is given, effective equations mevjuantum effects through systematic
derivations of perturbations around this state.

The tool of effective equations is thus not completely gehets applicability depending on
whether sufficient information on interesting states carob&ined without actually completely
solving the quantum theory to be evaluated. Partial saistimust be known, or assumptions
are necessary which must be justified differently. The teahbst powerful if a solvable theory
close enough to the one of interest is available. Such aldeltheory is then usually called “free
theory” as it is the absence of complicated interactionstvhiakes it explicitly solvable. In such a
situation, a free vacuum state or other state of interestasvk fully, and modifications to the free
vacuum state due to interactions can be included pertughatiMore generally, without reference
to a specific low energy regime, the availability of a freeafyeallows perturbative constructions
of dynamical coherent states even for complicated theories

Often, it is not the interacting vacuum or the dynamical eehestate itself which is of interest
but rather a semiclassical description of the selecte@se&s shown below, the kind of solvability
required to make effective equations feasible implies thafree theory has coherent states whose
expectation values follow the classical trajectories @yaghis is no longer true once interactions
are switched on and classical equations have to be amendqdamum corrections. Effective
equations manage to translate state properties from thevimehof dynamical coherent states into
guantum corrections to the classical dynamics. Intuijiviiis captures the back-reaction of the
spreading and deformations of an evolving state on its é&pen values.

2. lllustration: anharmonic oscillator

The best known example is that of quantum field theory wheezactions are included per-
turbatively starting from a free theory with a quadraticiactin the canonical fields. Perturbation
terms are organized in Feynman expansions for the coupfingpoint functions, but often one can
also compute an effective action through path integratitiee same techniques can be applied to
an anharmonic oscillator, where the harmonic oscillatpresents the free theory. Here, itis well-
known that coherent states exist whose expectation vatliesvithe classical trajectory precisely,
and they can in fact easily be written down. This is no longee twhen an anharmonicity (q)
is added to the potential. Then, expectation values ofstienot follow the classical trajectory
anymore but rather satisfy equations of motion which defiee the effective action
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to first order inh [1]. In this section, we briefly illustrate how this resultrche derived, but using
the previously described picture of back-reaction of sprad deformations on expectation values
rather than generating functions of 1-particle irredueitsipoint functions.

We use a Hamiltoniahl = 5= p?+V (§) = = p? + 2mw?§? + 21 §% with cubic anharmonicity
for illustrative purposes. Expectation values of a statesaibject to equations of motion
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with a straightforward derivation as, e.g., in the Ehrenfagorem. The second equation makes
it obvious that the anharmonicity couples expectation emlto fluctuations, here t0Aq)2 =
((§— ())?). This requires quantum corrections to the classical egunativhen the evolution of
expectation values is to be described.

However, fluctuations are themselves dynamical. Unlikéhedlassical case, the above equa-
tions do not provide a closed system sidegs in general a function of time which must be known
to solve for(p). We can extend the system of equations by one for the fluotuathich is derived
as above, also referring to the Leibniz rule:

£ (007 = S(@) — (@7 = {16, A)) —2(0) £ (0) = — (ap-+ P~

This tells us howAq evolves, but only if the covariandgyp = %<Qf)+ pg) — (§)(p) is known,
which enters as a new dynamical quantum degree of freedomhaeto go ahead and compute
its equation of motion

d 1 5 2 - 2 0,3
This equation does not only provide a coupling tef@i(Aq)? between expectation values and
fluctuations, but again introduces a new independent Jarige third order momer@®3 = ((§—
(6)3) = (6%) — 3(6)(Ag)? — ()® which is related to skewness and thus deformations of a wave
function away from a Gaussian.

Proceeding in this way shows that all infinitely many quanitanables

G 1= (| (= (Iaw)"™ (D= WIPIW))) gy ¥) 2.2)

which one can use to describe a stiale, are coupled to each other and to the expectation values.
This whole system of infinitely many ordinary differentiaduations is equivalent to the partial
Schrédinger equation.

So far, we have only reformulated the usual equations of uamechanics in a way which
in general is much harder to solve than the Schrédinger &guate have not yet included any
approximations or effective techniques. To arrive at dffecequations, which are to amend the
classical equations by quantum corrections and can thadvnonly finitely many local degrees
of freedom, we have to truncate the dynamical equationslicaufine whole set of infinitely many
local quantum degrees of freedom collected in @'. In our example, this can be achieved if
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(AQ)(q, p) is known as a function off and p. Inserting it into%(p) = —V'((§)) — A(Ag)? then
results in effective equations far= (§) and p = (p) which are closed but do include quantum
effects.

The crucial step in the derivation of effective equationd &or a justification of the approx-
imation they provide is such a truncation to finitely manyapdndent variables (or finitely many
local ones in field theories). For perturbative potentiatsuad the harmonic oscillator, an adia-
batic approximation combined with the semiclassical orfeeses this decoupling and allows one
to computeAq order by order. To first order il and second in the adiabatic approximation, the
result formulated as a second order equatiorgfeather than two coupled first order equations for
gandp,is[2, 3, 4]
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with a general anharmonic potentld(q). As one can see, this indeed agrees with the equation of
motion implied by the 1-particle irreducible low energyesftive action (2.1).

3. General procedure

While the above example demonstrates that the basic plenofpguantum back-reaction of
a spreading state reproduces results from the 1-partigducible effective action, the procedure
is more widely applicable. In particular, the entirely cammal formulation makes it suitable for
canonical quantizations such as loop quantum gravity. Asave the central requirement for its
feasibility is the availability of a relation to a free systevhere quantum variables decouple. In
the example, this was the harmonic oscillator for whichhwit= 0, no coupling terms between
expectation values and fluctuations arise. In this caselH#miltonian is quadratic in canonical
variables, and thu{s,l—ﬂ is linear in basic operators for any basic operator in thedkdt of the
commutator. The same is available in quantum field theorgre/ffree theories provide quadratic
Hamiltonians. However, gravity in general is very far fronharmonic oscillator or a free field
theory; at least measure termy&letq,y, with the spatial metrigj,, appear in any Hamiltonian and
are certainly not quadratic once the metric becomes a dyravariable rather than being treated
as a background.

But free systems are more general than quadratic ones. \&Imaticessary for a free theory
in the above sense is the linear nature of commutators batlesic variables and the Hamilto-
nian. This implies a closed set of equations of motion foregxation values of basic operators
alone. For canonical basic variables, this requires a @ig@drdamiltonian, but for non-canonical
variables one has the more general situation of a lineaesysthey have basic variablgswhich
together with the Hamiltoniafl form a linear commutator algebra. For such systems, equtio
of motion for expectation values and moments of a state gge@nd can be solved explicitly [2].



Loop Quantum Gravity and Effective Theory Martin Bojowald

Perturbations around free systems can then be analyzedtévacting theories where the decou-
pling happens only approximately. The coupling terms, elfor by approximations, give rise to
guantum corrections in effective equations.

For perturbations around general linear systems, the atiidtly assumption used before to
derive (2.3) may not always be justified. Th&?®" may not be solvable as functions of the basic
J; to be inserted in equations for expectation values. Buténeidassical approximation by itself
allows a decoupling of almost all quantum variables, whith gives us effective equations of
finitely many (local) variables. One may, however, be forteéeep more than the expectation
values independent, leading to higher dimensional effectystem.

4. |sotropic cosmology

Is a linear system of this type available for gravity? It iagenable to look first at models of
the same dimensionality as the harmonic oscillator in @assnechanics. In gravity, this brings
us to isotropic cosmology with a single gravitational degof freedom, the scale facter Its
dynamics is given by the Friedmann equation

anG
?Vp=—5p ¥?p, (4.2)

written here in variables = a for extrinsic curvature ang = a?> wherep is the component of an
isotropic densitized triad, assumed positive. (The demsittriad component can take both signs
due to the orientation of the triad. This is important for Hiegularity issue [5, 6], but can usually
be ignored for effective equations which typically breakvidctoo close to a classical singularity.)
These variables are more closely related to those used pngoantum gravity.

We have specified this equation to a particular matter conggven by a free massless scalar.
(As a perfect fluid, this corresponds to stiff matter whosespure is identical to its energy density.)
This matter ingredient has the advantage of providing a igui@cexpression fop, in terms of the
canonical gravitational variablgg, p): Solving the Friedmann equation yieltisy| O |cp| =: H.
One can interpret this as the Hamiltonian generating theifidve variablep which plays the role
of an internal time. Such a formulation in termsgfevolution is equivalent to working with the
Friedmann equation and solving for functions in terms of ardimate such as proper or conformal
time. The reason is that the Friedmann equation is, from #m®mical perspective, a constraint.
The corresponding gauge freedom is the choice of the timedewde which, as in full general
relativity, is free. Using the evolution of gravitationanables with respect tg as an internal time
has two advantages compared to a time coordinate. We etieniha choice of a coordinate time
and a discussion of possible interpretations such as howaatze quantities referring to time
coordinates in the absence of an absolute time. More immuibyiahe g-Hamiltonian is quadratic
and provides the desired free system for gravity.

As with any quadratic Hamiltonian expectation values andnmiats decouple. In this case,
equations of motion corresponding to a Hamiltonian operéite- %(éf)-i- pe) are

©=© , (p=(p , G*?2=26"2 | Gc¥2=0 , G*?=-2G??

derived by the same method as before. They can be solvey bgsd) (@) = c1€?, (P) (@) = coe 9,
G%2(¢) = c3e72?, G1?() = ¢4 andG??(@) = cse??. This system can be analyzed and perturbed
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around [7], but here it is more interesting to discuss anradtid/e quantization of the same classical
model, provided by loop quantum cosmology. In loop quantuavity, as described in more detail
in the following section, holonomies are used as basic eperaather than components of extrinsic
curvature. For loop quantum cosmology [8], this essentiafiplies (skipping several steps in the
derivation) that sic appears in the Friedmann equation instead ofhich one can interpret as
the inclusion of higher curvature terms due to quantum gégmeroceeding as before, the loop
HamiltonianH = Eﬁ: (in a yet to be specified factor ordering) fgrevolution is then non-

quadratic.
Remarkably, the system does remain linear under this chg@jgdo see this, we introduce
a new basic operataf = pec, for which we have a linear Hamiltoniad = —3i(J—J") as a

specific factor ordering op/sﬁ:. Since we now use non-canonical variat(lésf), linearity of the
Hamiltonian does not immediately imply solvability. Hovegyhere the algebra of basic operators,
which includes the Hamiltonian as a linear combinationjriedr, providing a centrally extended
sl(2,R) algebra
p,d]=hJ , [pJd|=-RI" | [J,J"=-2Ap—R°.
The system is thus linear and provides a free system ever icathtext of a loop quantization.
This can also be seen in the equations of motion

B =-3@+d . @ =-3(p+h={J"
for expectation values, forming a closed set. They havergérelutions

(B)(@) = L(cre?+ce?) - IR (4.2)
() (@) = 2(cre?—coe?) +i(H) (4.3)

where(H) is a constant of motion since no explicit time dependencedsemnt in the absence of
a matter potential. However, not all these solutions cpwad to expectation values computed in
a physically normalized state. Although we have made usheofact that{(/|) = 1 in deriving

the equations of motion and thus referred to some part of thmalization conditions, there is
no guarantee yet that the system is defined with respect toren product respecting the correct
adjointness conditions of basic operators. Implementiegcbrrect inner product is far from trivial

in constrained systems, and it may appear that it is even diffreult in our treatment since no
states are being used explicitly. The implementation is@udndirect, but bears several advantages
in its concrete realization.

For p we must guarantee that it is self-adjoint, which we can gail in our equations for
expectation values (and fluctuations below) by requiipgto be real for solutions we accept as
physical. The condition fod is more involved: Classically we havd) = p? for J = pexp(ic).
This provides a reality condition farwhich, in addition to{p) being real, must be imposed in the
quantization by determining a physical inner product forickhexg(ic) is quantized to a unitary
operator. Although an explicit form for a physical inner guat in this system may be difficult
to find, for the equations used here this reality condition akso be implemented rather easily
through reality conditions fofJ). Taking expectation values of the identity" = p?, we have [10]

)= ({8) + )7 = GPP— GV 7 @4
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Figure 1. State spreading through a bounce: Mean trajectories foe@agion values and spreads from
fluctuations are plotted. The fluctuations may or may not lmensgtric around the bounce

where we now denote quantum variables explicitly by thegrapor products since more than two
real variables are involved in the basic operators. Heis, ithpliesc;c, = H? + O(R) and thus
leaves only the family of bouncing solutions

(P)(¢) = (H)cosHp—3)~R , (J)(9) = —(H)(sinh(¢p—3) i) (4.5)

out of (4.2) and (4.3), wherg is bounded away from zero. (The parameledefined bye?® =
cz/c, is the only freedom left in solutions for expectation vaadter imposing the reality condi-
tion.)

Similarly, we can derive equations of motion for fluctuasdi get a more precise picture of
the spreading state [10]. In this parameterized model, iy quantum degree of freedom is the
volume of the universe since the matter figighlays the role of time. Fluctuations thus primarily
refer to those of the total isotropic geometry, which is &eamnon-intuitive notion. On solutions,
however, the geometrical and matter variables are coeland so geometry fluctuations are
directly related to fluctuations of the homogeneous matédal .fiOne can see this clearly in Fig. 1,
where one can interpret the spread vertically as fluctuatafrp, or horizontally as fluctuations
of @. (Physically more interesting fluctuations as they are ussadflationary structure formation
would require perturbations of the model by inhomogensifie

For (H) > R, solutions are given byAp)? = G%2 ~ h(H) cosH2(@— &,)) with a new integra-
tion constan®,. Ford, # d (which can be seen to be related to squeezing), fluctuaticthe ctate
are not symmetric around the bounce. Examples are illestriat Fig. 1, and physical implications
are further discussed in [11]. For instance, it turns out fltan within one branch of the universe
there is only limited access to some properties of the othemdih which makes it impossible to
determine whether the state before the bounce resembleaftbiathe bounce in its semiclassical
appearance.
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5. Inhomogeneities

What we have seen so far provides example for the use of Heetiuations in quantum
cosmology, even addressing thorny issues such as implisatf the physical inner product. For
phenomenological applications, this has to be extendethtismogeneous situations which requires
more background material than provided so far. Loop quanjuewity [12, 13, 14] is based on
canonical gravity formulated as an SU(2) gauge theory intésdr variables{Ag(x),E})(y)} =
8ny65§5}5(x,y) [15, 16]. The gauge group is that of rotations of the te@evhich is used instead
of a metricdap = €46}, (Whereef is the matrix inverse of}). All points x,y € X are spatial, making
use of a space-time splitting as in any canonical formutati®he variables are then defined as
the densitized triadE? = | dete] |e? and the connectiom, = I, 4 yK/, with the spin connection
Mh = —eeP(daef + 3ekeLdcey;) andK; := €’Kap related to extrinsic curvature. (The Barbero-
Immirzi parametety > 0 [16, 17] can be freely specified classically without afifegithe theory.
After quantization it determines the discreteness scaspafial geometry.)

Gravitational dynamics of these variables is implementgddnstraints. But before address-
ing those one can notice an important advantage of conmedigables compared to others such as
the older ADM variables directly referring tq, [18]. They allow the introduction of scalar-type
variables as in lattice gauge theories: For any ceraad surface&in space, we define holonomies
and fluxes [19]

he(A) = Z exp / Anéd , Fs(E)= /s d?yn 3T’ (5.1)

with the tangent vectog? to a curve, the co-normat, to a surface and Pauli matricés These
variables satisfy a closed algebra determined by theirsdBoikrackets which is well-defined and,
unlike that of the fields, free of delta-functions. It cangtne represented on a Hilbert space, which
provides a rigorous quantization.

In this way, loop quantum gravity does not directly and ginéfiorwardly quantize the classical
variables as they are presented in general relativity. thierauses mathematical consistency con-
ditions and principles such as background independendeatery first step of the quantization,
which leads to the selection of the quantized variables lansithe eventual microscopic degrees of
freedom of the theory. The classical theory is certainlydugeit only as a guideline so as to have
a chance of obtaining the correct classical limit. Stile dorrect classical limit is not guaranteed
and has to be verified explicitly. In particular, a classg@éhce-time picture has to emerge from the
underlying microscopic dynamics in low-curvature regimes

After quantization, holonomies play the role of “creatiargerators of geometry. In a connec-
tion representation, they act by multiplication and add dependence of a state on the connection
along the curve used in the holonomy. Degrees of freedomhare draph-based, a general state
taking the formy ;¢ Cqjc(®)Tgjc in @ spin network basidg j c(A) = [MvegCv - MNecg Pje(Ne(A))
[20]. Labels are graphgin space, half-integergon edges of the graph for irreducible SU(2) rep-
resentations and vertex lab&@sf intertwining operators. In the coefficientg; c(¢) of a general
state we have included the dependence on possible mattkr digth as a scalgr These functions
can themselves be expanded in a basis of the matter Hilbeeesput this will not be necessary
for what follows.



Loop Quantum Gravity and Effective Theory Martin Bojowald

Such a state represents quantum geometry, which can betexittay acting with geometrical
operators. Elementary geometry expectation values aeady fluxes (or areagp;, (he)|Fs|pj. (he)) ~
je using a flux operator quantizinigs = deZyEiaTina for a 2-surfaceSintersecting an edge In
a basis state, the edge labglsthus determine local elementary areas building up an inlggmo
neous geometry described by a labeled gréph),C). (The remaining label€, are relevant for
the volume.)

These basis states can, however, not be physical when os@emthe imposition of con-
straints to capture the correct dynamics of quantized gémelativity. Physical states are annihi-
lated by the Hamiltonian constraint (which in the isotropase gave us the Friedmann equation
(4.1)). As an operator, this constraint typically createsvredges and vertices [21, 22] because
it involves holonomy operators quantizing the curvaturehef Ashtekar connection. As a conse-
guence, physical states cannot be based on a single graphubtibe superpositions of different
graph states. Such superpositions can be understood adiramtize relational dynamics in the ab-
sence of an absolute time. As in the cosmological exampke cbpnoses an internal time variable
from the dynamical fields. In general situations, no globaktsuch ag for a free massless scalar
exists, but locally evolution can still be described in othgitable variables. It is often convenient
to use the spatial volume as internal time and, at least féynexpand a state in volume eigen-
states. (The volume operator [23, 24] is complicated arspigstrum is not known explicitly in the
full theory, but it is convenient for the conceptual argumeBince each action of the Hamiltonian
constraint changes spins and the graph, and thus the voitshasic action can be seen to provide
elementary moves of a dynamically changing lattice. Tylhickarger volumes require finer graphs
and thus the underlying lattice is being refined as the ustvexpands. New degrees of freedom
emerge while the universe grows; see also [25] for more defahis is complicated in general, but
treatable in models. At this place, further assumptionstiesised in effective models describing
the refinement, which are to be substantiated by consistetatjons arising from the action of the
underlying Hamiltonian constraint operator.

6. Near isotropy and emergence

Suitable approximations refer to perturbations of inhosragjties around an isotropic back-
ground, which is of importance for observational cosmolo@this can be implemented at the
guantum level: If all labels of a single graph state in theuaodé decomposition are nearly equal,
the total volume of an isotropic “background” geometry isetimined by the total spif)j) = Y je.
(We assume that not many different graphs contribute touperposition at a fixed volume eigen-
value, such that, at a given volume, one essentially hasgesiattice.) Small inhomogeneities
are given bydj(e) = je— (j), seen as a discrete spatial function on edges. A continuunit li
finally provides the spatial metric modes of cosmologicatyréation theory through the interpo-
lateddj(e). After a mode decomposition, based on the availability ohekiground geometry in
the perturbation theory, classical modes such as the soal@ic mode or gravitons emerge.

While the Hamiltonian constraint equation at the quantuwellevould be difficult to solve,
especially for interesting cosmological solutions, one geore easily extract its crucial properties
in effective equations. Those equations, as describedeireamples before, are derived from
expectation values of Hamiltonians or constraints. Thepedation values can then be treated by
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approximation schemes to arrive at simpler expressionswsiill capture the essential physics.
Only then would one start to solve equations, which is moasifde than before deriving effective
equations. Even properties of suitable semiclassica¢stean be derived at the effective level,
which is based on equations of motion for fluctuations antddrignoments. Thus, neither solutions
to the quantum constraints nor precise functional exppessof semiclassical states are required in
this procedure. Nevertheless, there are certainly sekiardles in an application to inhomogeneous
situations, such as the actual computation of expectattues in general states.

Detailed calculations are still in progress [26, 27, 28,9hpplications in cosmological phe-
nomenology, but this picture already illustrates the emeeg of classical excitations in this frame-
work [30]: Microscopic degrees of freedom are given by grafdtes with labelge determining
elementary geometrical excitations. The fundamental ltaman constraint changes edges and
spins, and thus provides local moves of an evolving irregakfice in the relational interpretation.
Such local changes gt now evolve(j) (related to the total volume) as well &$(e) (the discrete
inhomogeneities). Continuum excitations emerge from #iet with a dynamics coming from
lattice moves. This is one example for emergence in the sehaemicroscopic theory provid-
ing degrees of freedom subject to dynamics considerabigrdiit from the classical evolution on
macroscopic scales.

Dynamical semiclassical states capturing these detadea kchanges are difficult to write,
especially for a graph-changing Hamiltonian. Here we seénatpe advantages of effective tech-
niques: they do not require a full state with a precise cotimeaependence on all edges. Prop-
erties of approximately coherent states can rather be mmtstl order by order in a semiclassical
expansion. The relevant information is again extracteshfexpectation value¢H) in general
states parameterized by quantum variables with suitalmlectassicality conditions. Now in the
field theoretical context, independent quantum variahlise dor each fundamental degree of free-
dom, i.e. for each edge. Due to the discrete nature of looptquagravity there are still finitely
many variables in a bounded volume, even though one is dgeaifith the quantization of a field
theory. This suggests that an extension of effective egusitiechniques to such a full situation can
be done without having to face too many field theoreticallstibs.

7. Conclusions

Effective theories provide means to extract phenomencédgnformation from fundamental
guantum theories. With recent developments, this is dvailbor canonical quantizations and can
take into account requirements for loop quantum gravityplEEk examples are provided in cos-
mology, based on an isotropic universe sourced by free esssicalar as solvable zeroth order.
This model is thus analogous to the harmonic oscillator @ssical mechanics and provides the
basis for a perturbation theory to include other degreesegfdom and interactions. These princi-
ples, in an inhomogeneous context, illustrate the emergenclassical excitations from quantum
states.
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