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1. Effective theory

Quantum gravity is a “fundamental” theory formulated at extremely high energies which, for
most practical applications, needs contact with low energies and thus phenomenology. A widely
used tool to achieve this is that of effective equations. Such equations provide useful approxi-
mations, but not to the whole quantum theory. They rather describe certain regimes, such as low
energy ones, and thus require additional information or assumptions to select such a regime. For
instance, one needs to know some properties of a suitable lowenergy state, such as the vacuum
of the theory. Once this is given, effective equations provide quantum effects through systematic
derivations of perturbations around this state.

The tool of effective equations is thus not completely general, its applicability depending on
whether sufficient information on interesting states can beobtained without actually completely
solving the quantum theory to be evaluated. Partial solutions must be known, or assumptions
are necessary which must be justified differently. The tool is most powerful if a solvable theory
close enough to the one of interest is available. Such a solvable theory is then usually called “free
theory” as it is the absence of complicated interactions which makes it explicitly solvable. In such a
situation, a free vacuum state or other state of interest is known fully, and modifications to the free
vacuum state due to interactions can be included perturbatively. More generally, without reference
to a specific low energy regime, the availability of a free theory allows perturbative constructions
of dynamical coherent states even for complicated theories.

Often, it is not the interacting vacuum or the dynamical coherent state itself which is of interest
but rather a semiclassical description of the selected sector. As shown below, the kind of solvability
required to make effective equations feasible implies thatthe free theory has coherent states whose
expectation values follow the classical trajectories exactly. This is no longer true once interactions
are switched on and classical equations have to be amended byquantum corrections. Effective
equations manage to translate state properties from the behavior of dynamical coherent states into
quantum corrections to the classical dynamics. Intuitively, this captures the back-reaction of the
spreading and deformations of an evolving state on its expectation values.

2. Illustration: anharmonic oscillator

The best known example is that of quantum field theory where interactions are included per-
turbatively starting from a free theory with a quadratic action in the canonical fields. Perturbation
terms are organized in Feynman expansions for the coupling of n-point functions, but often one can
also compute an effective action through path integration.The same techniques can be applied to
an anharmonic oscillator, where the harmonic oscillator represents the free theory. Here, it is well-
known that coherent states exist whose expectation values follow the classical trajectory precisely,
and they can in fact easily be written down. This is no longer true when an anharmonicityU(q)

is added to the potential. Then, expectation values of states do not follow the classical trajectory
anymore but rather satisfy equations of motion which derivefrom the effective action

Γeff[q] =

∫
dt




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to first order inh̄ [1]. In this section, we briefly illustrate how this result can be derived, but using
the previously described picture of back-reaction of spread and deformations on expectation values
rather than generating functions of 1-particle irreducible n-point functions.

We use a Hamiltonian̂H = 1
2m p̂2+V(q̂) = 1

2m p̂2+ 1
2mω2q̂2 + 1

3λ q̂3 with cubic anharmonicity
for illustrative purposes. Expectation values of a state are subject to equations of motion

d
dt
〈q̂〉 =

1
ih̄
〈[q̂,Ĥ]〉 =

1
m
〈p̂〉

d
dt
〈p̂〉 =

1
ih̄
〈[p̂,Ĥ]〉 = −mω2〈q̂〉−λ 〈q̂2〉 = −mω2〈q̂〉−λ 〈q̂〉2−λ (∆q)2 = −V ′(〈q̂〉)−λ (∆q)2

with a straightforward derivation as, e.g., in the Ehrenfest theorem. The second equation makes
it obvious that the anharmonicity couples expectation values to fluctuations, here to(∆q)2 =

〈(q̂−〈q̂〉)2〉. This requires quantum corrections to the classical equations when the evolution of
expectation values is to be described.

However, fluctuations are themselves dynamical. Unlike in the classical case, the above equa-
tions do not provide a closed system since∆q is in general a function of time which must be known
to solve for〈p̂〉. We can extend the system of equations by one for the fluctuation which is derived
as above, also referring to the Leibniz rule:

d
dt

(∆q)2 =
d
dt

(〈q̂2〉− 〈q̂〉2) =
1
ih̄
〈[q̂2,Ĥ]〉−2〈q̂〉 d

dt
〈q̂〉 =

1
m
〈q̂p̂+ p̂q̂〉− 2

m
〈q̂〉〈p̂〉 =

2
m

Cqp.

This tells us how∆q evolves, but only if the covarianceCqp = 1
2〈q̂p̂+ p̂q̂〉 − 〈q̂〉〈p̂〉 is known,

which enters as a new dynamical quantum degree of freedom. Wehave to go ahead and compute
its equation of motion

d
dt

Cqp =
1
m

Cqp+mω2(∆q)2 +6λ 〈q̂〉(∆q)2 +3λG0,3 .

This equation does not only provide a coupling term〈q̂〉(∆q)2 between expectation values and
fluctuations, but again introduces a new independent variable: the third order momentG0,3 = 〈(q̂−
〈q̂〉)3〉 = 〈q̂3〉− 3〈q̂〉(∆q)2 −〈q̂〉3 which is related to skewness and thus deformations of a wave
function away from a Gaussian.

Proceeding in this way shows that all infinitely many quantumvariables

Ga,n :=
〈

ψ
∣∣∣
(
(q̂−〈ψ |q̂|ψ〉)n−a(p̂−〈ψ |p̂|ψ〉)a)

symm

∣∣∣ψ
〉

, (2.2)

which one can use to describe a state|ψ〉, are coupled to each other and to the expectation values.
This whole system of infinitely many ordinary differential equations is equivalent to the partial
Schrödinger equation.

So far, we have only reformulated the usual equations of quantum mechanics in a way which
in general is much harder to solve than the Schrödinger equation. We have not yet included any
approximations or effective techniques. To arrive at effective equations, which are to amend the
classical equations by quantum corrections and can thus involve only finitely many local degrees
of freedom, we have to truncate the dynamical equations coupling the whole set of infinitely many
local quantum degrees of freedom collected in theGa,n. In our example, this can be achieved if
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(∆q)(q, p) is known as a function ofq and p. Inserting it into d
dt 〈p̂〉 = −V ′(〈q̂〉)− λ (∆q)2 then

results in effective equations forq = 〈q̂〉 and p = 〈p̂〉 which are closed but do include quantum
effects.

The crucial step in the derivation of effective equations and for a justification of the approx-
imation they provide is such a truncation to finitely many independent variables (or finitely many
local ones in field theories). For perturbative potentials around the harmonic oscillator, an adia-
batic approximation combined with the semiclassical one achieves this decoupling and allows one
to compute∆q order by order. To first order in̄h and second in the adiabatic approximation, the
result formulated as a second order equation forq, rather than two coupled first order equations for
q andp, is [2, 3, 4]


m+

h̄U′′′(q)2

32m2ω5
(

1+ U ′′(q)
mω2

) 5
2


q̈+

h̄
(

4mω2U ′′′(q)U ′′′′(q)
(

1+ U ′′(q)
mω2

)
−5U ′′′(q)3

)

128m3ω7
(

1+ U ′′(q)
mω2

) 7
2

q̇2

+mω2q+U ′(q)+
h̄U′′′(q)

4mω
(

1+ U ′′(q)
mω2

) 1
2

= 0 (2.3)

with a general anharmonic potentialU(q). As one can see, this indeed agrees with the equation of
motion implied by the 1-particle irreducible low energy effective action (2.1).

3. General procedure

While the above example demonstrates that the basic principle of quantum back-reaction of
a spreading state reproduces results from the 1-particle irreducible effective action, the procedure
is more widely applicable. In particular, the entirely canonical formulation makes it suitable for
canonical quantizations such as loop quantum gravity. As wesaw, the central requirement for its
feasibility is the availability of a relation to a free system where quantum variables decouple. In
the example, this was the harmonic oscillator for which, with λ = 0, no coupling terms between
expectation values and fluctuations arise. In this case, theHamiltonian is quadratic in canonical
variables, and thus[·,Ĥ] is linear in basic operators for any basic operator in the left slot of the
commutator. The same is available in quantum field theory, where free theories provide quadratic
Hamiltonians. However, gravity in general is very far from aharmonic oscillator or a free field
theory; at least measure terms

√
detqab with the spatial metricqab appear in any Hamiltonian and

are certainly not quadratic once the metric becomes a dynamical variable rather than being treated
as a background.

But free systems are more general than quadratic ones. What is necessary for a free theory
in the above sense is the linear nature of commutators between basic variables and the Hamilto-
nian. This implies a closed set of equations of motion for expectation values of basic operators
alone. For canonical basic variables, this requires a quadratic Hamiltonian, but for non-canonical
variables one has the more general situation of a linear system. They have basic variablesJi which
together with the Hamiltonian̂H form a linear commutator algebra. For such systems, equations
of motion for expectation values and moments of a state decouple and can be solved explicitly [2].
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Perturbations around free systems can then be analyzed for interacting theories where the decou-
pling happens only approximately. The coupling terms, solved for by approximations, give rise to
quantum corrections in effective equations.

For perturbations around general linear systems, the adiabaticity assumption used before to
derive (2.3) may not always be justified. Then,Ga,n may not be solvable as functions of the basic
Ji to be inserted in equations for expectation values. But the semiclassical approximation by itself
allows a decoupling of almost all quantum variables, which still gives us effective equations of
finitely many (local) variables. One may, however, be forcedto keep more than the expectation
values independent, leading to higher dimensional effective system.

4. Isotropic cosmology

Is a linear system of this type available for gravity? It is reasonable to look first at models of
the same dimensionality as the harmonic oscillator in classical mechanics. In gravity, this brings
us to isotropic cosmology with a single gravitational degree of freedom, the scale factora. Its
dynamics is given by the Friedmann equation

c2√p =
4πG

3
p−3/2p2

φ , (4.1)

written here in variablesc = ȧ for extrinsic curvature andp = a2 wherep is the component of an
isotropic densitized triad, assumed positive. (The densitized triad component can take both signs
due to the orientation of the triad. This is important for thesingularity issue [5, 6], but can usually
be ignored for effective equations which typically break down too close to a classical singularity.)
These variables are more closely related to those used in loop quantum gravity.

We have specified this equation to a particular matter content, given by a free massless scalar.
(As a perfect fluid, this corresponds to stiff matter whose pressure is identical to its energy density.)
This matter ingredient has the advantage of providing a quadratic expression forpφ in terms of the
canonical gravitational variables(c, p): Solving the Friedmann equation yields|pφ | ∝ |cp| =: H.
One can interpret this as the Hamiltonian generating the flowin the variableφ which plays the role
of an internal time. Such a formulation in terms ofφ -evolution is equivalent to working with the
Friedmann equation and solving for functions in terms of a coordinate such as proper or conformal
time. The reason is that the Friedmann equation is, from the canonical perspective, a constraint.
The corresponding gauge freedom is the choice of the time coordinate which, as in full general
relativity, is free. Using the evolution of gravitational variables with respect toφ as an internal time
has two advantages compared to a time coordinate. We eliminate the choice of a coordinate time
and a discussion of possible interpretations such as how to quantize quantities referring to time
coordinates in the absence of an absolute time. More importantly, theφ -Hamiltonian is quadratic
and provides the desired free system for gravity.

As with any quadratic Hamiltonian expectation values and moments decouple. In this case,
equations of motion corresponding to a Hamiltonian operator Ĥ = 1

2(ĉp̂+ p̂ĉ) are

〈 ˙̂c〉 = 〈ĉ〉 , 〈 ˙̂p〉 = 〈p̂〉 , Ġ0,2 = 2G0,2 , Ġ1,2 = 0 , Ġ2,2 = −2G2,2

derived by the same method as before. They can be solved easily by 〈ĉ〉(φ) = c1eφ , 〈p̂〉(φ) = c2e−φ ,
G0,2(φ) = c3e−2φ , G1,2(φ) = c4 andG2,2(φ) = c5e2φ . This system can be analyzed and perturbed

5
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around [7], but here it is more interesting to discuss an alternative quantization of the same classical
model, provided by loop quantum cosmology. In loop quantum gravity, as described in more detail
in the following section, holonomies are used as basic operators rather than components of extrinsic
curvature. For loop quantum cosmology [8], this essentially implies (skipping several steps in the
derivation) that sinc appears in the Friedmann equation instead ofc which one can interpret as
the inclusion of higher curvature terms due to quantum geometry. Proceeding as before, the loop
Hamiltonian Ĥ = p̂sinc (in a yet to be specified factor ordering) forφ -evolution is then non-
quadratic.

Remarkably, the system does remain linear under this change[9]. To see this, we introduce
a new basic operator̂J = p̂êic, for which we have a linear Hamiltonian̂H = −1

2 i(Ĵ− Ĵ†) as a

specific factor ordering of̂psinc. Since we now use non-canonical variables(p̂, Ĵ), linearity of the
Hamiltonian does not immediately imply solvability. However, here the algebra of basic operators,
which includes the Hamiltonian as a linear combination, is linear, providing a centrally extended
sl(2,R) algebra

[p̂, Ĵ] = h̄Ĵ , [p̂, Ĵ†] = −h̄Ĵ† , [Ĵ, Ĵ†] = −2h̄p̂− h̄2 .

The system is thus linear and provides a free system even in the context of a loop quantization.
This can also be seen in the equations of motion

〈 ˙̂p〉 = −1
2(〈Ĵ〉+ 〈Ĵ†〉) , 〈 ˙̂J〉 = −1

2(〈p̂〉+ h̄) = 〈 ˙̂J†〉

for expectation values, forming a closed set. They have general solutions

〈p̂〉(φ) = 1
2(c1e−φ +c2eφ )− 1

2h̄ (4.2)

〈Ĵ〉(φ) = 1
2(c1e−φ −c2eφ )+ i〈Ĥ〉 (4.3)

where〈Ĥ〉 is a constant of motion since no explicit time dependence is present in the absence of
a matter potential. However, not all these solutions correspond to expectation values computed in
a physically normalized state. Although we have made use of the fact that〈ψ |ψ〉 = 1 in deriving
the equations of motion and thus referred to some part of the normalization conditions, there is
no guarantee yet that the system is defined with respect to an inner product respecting the correct
adjointness conditions of basic operators. Implementing the correct inner product is far from trivial
in constrained systems, and it may appear that it is even moredifficult in our treatment since no
states are being used explicitly. The implementation is indeed indirect, but bears several advantages
in its concrete realization.

For p̂ we must guarantee that it is self-adjoint, which we can easily do in our equations for
expectation values (and fluctuations below) by requiring〈p̂〉 to be real for solutions we accept as
physical. The condition for̂J is more involved: Classically we haveJJ̄ = p2 for J = pexp(ic).
This provides a reality condition forc which, in addition to〈p̂〉 being real, must be imposed in the
quantization by determining a physical inner product for which exp(ic) is quantized to a unitary
operator. Although an explicit form for a physical inner product in this system may be difficult
to find, for the equations used here this reality condition can also be implemented rather easily
through reality conditions for〈Ĵ〉. Taking expectation values of the identityĴĴ† = p̂2, we have [10]

|〈Ĵ〉|2− (〈p̂〉+ 1
2h̄)2 = Gpp−GJJ̄ +

1
4

h̄2 (4.4)
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Figure 1: State spreading through a bounce: Mean trajectories for expectation values and spreads from
fluctuations are plotted. The fluctuations may or may not be symmetric around the bounce

where we now denote quantum variables explicitly by their operator products since more than two
real variables are involved in the basic operators. Here, this impliesc1c2 = H2 + O(h̄) and thus
leaves only the family of bouncing solutions

〈p̂〉(φ) = 〈Ĥ〉cosh(φ −δ )− h̄ , 〈Ĵ〉(φ) = −〈Ĥ〉(sinh(φ −δ )− i) (4.5)

out of (4.2) and (4.3), wherep is bounded away from zero. (The parameterδ , defined bye2δ =

c2/c1, is the only freedom left in solutions for expectation values after imposing the reality condi-
tion.)

Similarly, we can derive equations of motion for fluctuations to get a more precise picture of
the spreading state [10]. In this parameterized model, the only quantum degree of freedom is the
volume of the universe since the matter fieldφ plays the role of time. Fluctuations thus primarily
refer to those of the total isotropic geometry, which is a rather non-intuitive notion. On solutions,
however, the geometrical and matter variables are correlated, and so geometry fluctuations are
directly related to fluctuations of the homogeneous matter field. One can see this clearly in Fig. 1,
where one can interpret the spread vertically as fluctuations of p, or horizontally as fluctuations
of φ . (Physically more interesting fluctuations as they are usedin inflationary structure formation
would require perturbations of the model by inhomogeneities.)

For 〈Ĥ〉≫ h̄, solutions are given by(∆p)2 = G0,2 ≈ h̄〈Ĥ〉cosh(2(φ −δ2)) with a new integra-
tion constantδ2. Forδ2 6= δ (which can be seen to be related to squeezing), fluctuations of the state
are not symmetric around the bounce. Examples are illustrated in Fig. 1, and physical implications
are further discussed in [11]. For instance, it turns out that from within one branch of the universe
there is only limited access to some properties of the other branch which makes it impossible to
determine whether the state before the bounce resembles that after the bounce in its semiclassical
appearance.

7
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5. Inhomogeneities

What we have seen so far provides example for the use of effective equations in quantum
cosmology, even addressing thorny issues such as implications of the physical inner product. For
phenomenological applications, this has to be extended to inhomogeneous situations which requires
more background material than provided so far. Loop quantumgravity [12, 13, 14] is based on
canonical gravity formulated as an SU(2) gauge theory in Ashtekar variables{Ai

a(x),E
b
j (y)} =

8πγGδ b
a δ i

jδ (x,y) [15, 16]. The gauge group is that of rotations of the triadea
i which is used instead

of a metricqab = ei
aei

b (whereea
i is the matrix inverse ofei

a). All points x,y∈ Σ are spatial, making
use of a space-time splitting as in any canonical formulation. The variables are then defined as
the densitized triadEa

i = |detej
b|ea

i and the connectionAi
a = Γi

a + γK i
a with the spin connection

Γi
a = −ε i jkeb

j (∂[aek
b] +

1
2ec

ke
l
a∂[ce

l
b]) andK i

a := eb
i Kab related to extrinsic curvature. (The Barbero–

Immirzi parameterγ > 0 [16, 17] can be freely specified classically without affecting the theory.
After quantization it determines the discreteness scale ofspatial geometry.)

Gravitational dynamics of these variables is implemented by constraints. But before address-
ing those one can notice an important advantage of connection variables compared to others such as
the older ADM variables directly referring toqab [18]. They allow the introduction of scalar-type
variables as in lattice gauge theories: For any curveeand surfaceS in space, we define holonomies
and fluxes [19]

he(A) = P exp
∫

e
Ai

aτiė
adt , FS(E) =

∫

S
d2ynaEa

i τ i (5.1)

with the tangent vector ˙ea to a curve, the co-normalna to a surface and Pauli matricesτi . These
variables satisfy a closed algebra determined by their Poisson brackets which is well-defined and,
unlike that of the fields, free of delta-functions. It can thus be represented on a Hilbert space, which
provides a rigorous quantization.

In this way, loop quantum gravity does not directly and straightforwardly quantize the classical
variables as they are presented in general relativity. It rather uses mathematical consistency con-
ditions and principles such as background independence at the very first step of the quantization,
which leads to the selection of the quantized variables and thus the eventual microscopic degrees of
freedom of the theory. The classical theory is certainly used, but only as a guideline so as to have
a chance of obtaining the correct classical limit. Still, the correct classical limit is not guaranteed
and has to be verified explicitly. In particular, a classicalspace-time picture has to emerge from the
underlying microscopic dynamics in low-curvature regimes.

After quantization, holonomies play the role of “creation”operators of geometry. In a connec-
tion representation, they act by multiplication and add newdependence of a state on the connection
along the curve used in the holonomy. Degrees of freedom are thus graph-based, a general state
taking the form∑g, j,C cg, j,C(φ)Tg, j,C in a spin network basisTg, j,C(A) = ∏v∈gCv ·∏e∈g ρ je(he(A))

[20]. Labels are graphsg in space, half-integersj on edges of the graph for irreducible SU(2) rep-
resentations and vertex labelsC of intertwining operators. In the coefficientscg, j,C(φ) of a general
state we have included the dependence on possible matter fields such as a scalarφ . These functions
can themselves be expanded in a basis of the matter Hilbert space, but this will not be necessary
for what follows.

8
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Such a state represents quantum geometry, which can be extracted by acting with geometrical
operators. Elementary geometry expectation values are given by fluxes (or areas)〈ρ je(he)|F̂S|ρ je(he)〉∼
je using a flux operator quantizingFS =

∫
Sd2yEa

i τ ina for a 2-surfaceS intersecting an edgee. In
a basis state, the edge labelsje thus determine local elementary areas building up an inhomoge-
neous geometry described by a labeled graph(g, j,C). (The remaining labelsCv are relevant for
the volume.)

These basis states can, however, not be physical when one considers the imposition of con-
straints to capture the correct dynamics of quantized general relativity. Physical states are annihi-
lated by the Hamiltonian constraint (which in the isotropiccase gave us the Friedmann equation
(4.1)). As an operator, this constraint typically creates new edges and vertices [21, 22] because
it involves holonomy operators quantizing the curvature ofthe Ashtekar connection. As a conse-
quence, physical states cannot be based on a single graph butmust be superpositions of different
graph states. Such superpositions can be understood as encoding the relational dynamics in the ab-
sence of an absolute time. As in the cosmological example, one chooses an internal time variable
from the dynamical fields. In general situations, no global time such asφ for a free massless scalar
exists, but locally evolution can still be described in other suitable variables. It is often convenient
to use the spatial volume as internal time and, at least formally, expand a state in volume eigen-
states. (The volume operator [23, 24] is complicated and itsspectrum is not known explicitly in the
full theory, but it is convenient for the conceptual argument.) Since each action of the Hamiltonian
constraint changes spins and the graph, and thus the volume,its basic action can be seen to provide
elementary moves of a dynamically changing lattice. Typically, larger volumes require finer graphs
and thus the underlying lattice is being refined as the universe expands. New degrees of freedom
emerge while the universe grows; see also [25] for more details. This is complicated in general, but
treatable in models. At this place, further assumptions must be used in effective models describing
the refinement, which are to be substantiated by consistencyrelations arising from the action of the
underlying Hamiltonian constraint operator.

6. Near isotropy and emergence

Suitable approximations refer to perturbations of inhomogeneities around an isotropic back-
ground, which is of importance for observational cosmology. This can be implemented at the
quantum level: If all labels of a single graph state in the volume decomposition are nearly equal,
the total volume of an isotropic “background” geometry is determined by the total spin〈 j〉= ∑e je.
(We assume that not many different graphs contribute to the superposition at a fixed volume eigen-
value, such that, at a given volume, one essentially has a single lattice.) Small inhomogeneities
are given byδ j(e) = je− 〈 j〉, seen as a discrete spatial function on edges. A continuum limit
finally provides the spatial metric modes of cosmological perturbation theory through the interpo-
latedδ j(e). After a mode decomposition, based on the availability of a background geometry in
the perturbation theory, classical modes such as the scalarmetric mode or gravitons emerge.

While the Hamiltonian constraint equation at the quantum level would be difficult to solve,
especially for interesting cosmological solutions, one can more easily extract its crucial properties
in effective equations. Those equations, as described in the examples before, are derived from
expectation values of Hamiltonians or constraints. These expectation values can then be treated by
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approximation schemes to arrive at simpler expressions which still capture the essential physics.
Only then would one start to solve equations, which is more feasible than before deriving effective
equations. Even properties of suitable semiclassical states can be derived at the effective level,
which is based on equations of motion for fluctuations and higher moments. Thus, neither solutions
to the quantum constraints nor precise functional expressions of semiclassical states are required in
this procedure. Nevertheless, there are certainly severalhurdles in an application to inhomogeneous
situations, such as the actual computation of expectation values in general states.

Detailed calculations are still in progress [26, 27, 28, 29]for applications in cosmological phe-
nomenology, but this picture already illustrates the emergence of classical excitations in this frame-
work [30]: Microscopic degrees of freedom are given by graphstates with labelsje determining
elementary geometrical excitations. The fundamental Hamiltonian constraint changes edges and
spins, and thus provides local moves of an evolving irregular lattice in the relational interpretation.
Such local changes ofje now evolve〈 j〉 (related to the total volume) as well asδ j(e) (the discrete
inhomogeneities). Continuum excitations emerge from the latter with a dynamics coming from
lattice moves. This is one example for emergence in the senseof a microscopic theory provid-
ing degrees of freedom subject to dynamics considerably different from the classical evolution on
macroscopic scales.

Dynamical semiclassical states capturing these detailed local changes are difficult to write,
especially for a graph-changing Hamiltonian. Here we see again the advantages of effective tech-
niques: they do not require a full state with a precise connection dependence on all edges. Prop-
erties of approximately coherent states can rather be constructed order by order in a semiclassical
expansion. The relevant information is again extracted from expectation values〈Ĥ〉 in general
states parameterized by quantum variables with suitable semiclassicality conditions. Now in the
field theoretical context, independent quantum variables arise for each fundamental degree of free-
dom, i.e. for each edge. Due to the discrete nature of loop quantum gravity there are still finitely
many variables in a bounded volume, even though one is dealing with the quantization of a field
theory. This suggests that an extension of effective equations techniques to such a full situation can
be done without having to face too many field theoretical subtleties.

7. Conclusions

Effective theories provide means to extract phenomenological information from fundamental
quantum theories. With recent developments, this is available for canonical quantizations and can
take into account requirements for loop quantum gravity. Explicit examples are provided in cos-
mology, based on an isotropic universe sourced by free massless scalar as solvable zeroth order.
This model is thus analogous to the harmonic oscillator in classical mechanics and provides the
basis for a perturbation theory to include other degrees of freedom and interactions. These princi-
ples, in an inhomogeneous context, illustrate the emergence of classical excitations from quantum
states.
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