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We consider a model of Quantum Gravity phenomenology, based on the idea that space-time may
have some unknown granular structure that respects the Lorentz symmetry. The proposal involves
non-trivial couplings of curvature to matter fields and leads to a well defined phenomenology. In
this manuscript, a brief description of the model is presented together with some results obtained
using linearized gravity and the Newtonian limit, which could be useful when comparing with
real experiments.
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1. Motivation

It is clear that current and future particle accelerators will not be reaching the Plank Energy
regime anytime soon and thus Quantum Gravity could well be beyond our experimental reach.
Recently, people have considered the possibility that Quantum Gravity effects may be detected
through violations of the space-time symmetries, particularly Lorentz symmetry. The search for
Quantum Gravity phenomenology through violations of Lorentz symmetries can be traced to [1, 2].
However, this possibility faces now very serious experimental bounds [3] and some theoretical
challenges. For instance, a preferential frame, which would be naturally associated with space-
time discreetness, when combined with the radiative corrections that appear in Quantum Field
Theory leads to the prediction of large effects that have not been observed [4].

In this work we deal with the following issue: Assuming that the space-time has some gran-
ular structure whose exact form is unknown, what are the other possible ways, besides Lorentz
symmetry violations, that Quantum Gravity might become manifest? In order to offer some an-
swer we consider a model based on the assumption that there are space-time building blocks which
are Lorentz invariant, ensuring that the theory respects the large scale Lorentz symmetry. Then
we consider possible phenomenological signatures which could arise in such situation. In order to
proceed, and given that the fundamental theory describing such structure (Quantum Gravity theory)
is unknown, we base our considerations on some symmetry principles; in particular, on an analogy
with solid state physics (the detailed proposal can be found in [5, 6]).

The basic idea is the folowing: When the macroscopic symmetry of a crystal coincides with
the symmetry of the fundamental crystalline cells, no deviation from the macroscopic symmetry
can be detected as indication of the fundamental structure of the crystal. On the other hand, if
both symmetries, the macro and the microscopic, do not coincide, deviations from the macroscopic
symmetry are expected to be present. For example, in a macroscopic sphere made of a cubic crystal,
the mismatch of the macro and the microscopic symmetry would manifest through the roughness
at the sphere’s surface.

This idea is translated to space-time by considering that its granular structure plays the role of
the crystalline cell and the Lorentz symmetry is analogous to the fundamental crystalline symmetry.
Following this analogy, in a flat region of space-time the granular structure is not expected to
become manifest (in particular not through the breakdown of Lorentz symmetry). On the other
hand, in regions of space-time where the Riemann tensor Rµνρσ (which measures the failure of an
open region of space-time to be Minkowski) is not zero, it could be possible to detect the mismatch
of symmetries. Thus we search for nontrivial couplings of the Riemann tensor with matter. We
note that, as the Ricci tensor Rµν is locally determined by the energy-momentum tensor of the
matter fields, the coupling of Rµν to the matter fields looks like a self-interaction and is therefore
uninteresting. We will therefore focus our attention on the traceless part of the Riemann tensor,
namely the Weyl tensor Wµνρσ . Thus, we consider nontrivial couplings of the Weyl tensor to
matter fields, in particular, to fermions.

2. The proposal: Coupling Weyl to matter

We seek for coupling terms of Weyl with fermion fields that are minimally suppressed by
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Planck’s mass MPl . Recall that the n-dimensional Lagrangian term (in mass dimensions) must be
suppressed by (1/MPl)n−4, thus, the dominant part of the coupling is expected to have dimension
5. It is well known that the Weyl tensor has mass dimension 2 and the fermionic fields have mass
dimension 3/2. Needless to say that the coupling terms we are looking for must also be scalar
under Lorentz transformations.

The most obvious 5-dimensional coupling term has the form

Wµνρσ ψ̄γ
µ

γ
ν
γ

ρ
γ

σ
ψ, (2.1)

where ψ stands for the various fundamental spinor fields in the standard model and γµ are the Dirac
matrices. Considering that derivatives have mass dimension 1 and that Weyl is traceless, is easy to
show that all the 5-dimensional coupling of Weyl with fermions have the form of (2.1). Given that,

Wµνρσ ψ̄γ
µ

γ
ν
γ

ρ
γ

σ
ψ = Wµνρσ ε

µνρσ
ψ̄γ

5
ψ, (2.2)

where εµνρσ is the volume 4-form, this coupling vanishes since the Weyl tensor have no totally
antisymmetric part.

Instead of giving up at this point we look for alternatives. One possibility is to consider some
object derived from Weyl that has a different index strcuture. This can be achieved by considering
the Weyl tensor as a self-adjoint map S → S , S being the 6-dimensional space of 2-forms.
In addition, the space-time metric endows the six dimensional vector space S with a pseudo-
Riemannian metric Gµνρσ . Due to the fact that this map is self-adjoint, it can be diagonalized and
its eigenvalues λ (s) and eigenforms Ξ

(s)
µν can be used to construct the desired terms. We will use

Gµνρσ to normalize the non-null eigenforms according to

Gµνρσ
Ξ

(s)
µνΞ

(s)
ρσ =±1. (2.3)

Furthermore, from the Weyl tensor symmetries, it can be seen [6] that it satisfies

εµν
ρσWρσ

αβ
(
ε
−1)

αβ

γδ
= Wµν

γδ , (2.4)

which implies that, if Ξ
(s)
µν is a Weyl eigenform with negative (or positive) norm, then Ξ̃

(s)
µν ≡

ερσ
µνΞ

(s)
ρσ is also a Weyl eigenform with the same eigenvalue and the opposite norm. This shows

that Weyl is always degenerated and the recipe is ill defined. In order to fix this, one needs to
discriminate between all the linear combinations of the degenerated eigenforms, which are all
clearly eigenforms with the same eigenvalue. It is noteworthy that the same object that leads to
the degeneration, namely εµνρσ , can be used to discriminate between all the linear combinations
of degenerated eigenforms. This is done by imposing to the three eigenforms with negative norm
(represented by Ξ

(l)
µν , l = 1,2,3) the condition

ε
µνρσ

Ξ
(l)
µνΞ

(l)
ρσ = 0. (2.5)

Note that three eigenforms with positive norm Ξ̃
(l)
µν are obtained from the eigenforms with negative

norm Ξ
(l)
µν by contracting with εµνρσ . Therefore, the Weyl eigenforms with negative norm satisfy-

ing the conditions (2.3) and (2.5) and the corresponding positive normed eigenforms are uniquely
defined1 and are the objects that are coupled to fermions.

1There is still an ambiguity in the signs of the eigenforms but this signs are absorbed by the coupling constants.
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It is worth noting that the space-time volume 4-form plays an important role in this scheme,
and thus, that we are taking the view that the space-time structure may involve, in addition to the
metric and a time orientation, a spacial orientation. Therefore, the suggestion is that gravity at a
quantum level may involve violations of discrete symmetries such as spatial inversion and time
reversal. There is a known pattern in the interactions of the Standard Model that the weaker the
interaction, less symmetries it respects and classical gravity breaks this pattern.

In order to determine the form of the coupling terms, note that Weyl eigenvalues have the
dimensions of the Weyl tensor and its eigenforms are dimensionless. The most natural way of
writing the dominant part of the coupling of Weyl and fermionic matter fields, taking into the
account the unavoidable degeneration mentioned above and a possible flavor dependence, is

L f =
1

MPl
∑
a

3

∑
l=1

λ
(l)
(

ξ
(l)
a Ξ

(l)
µν + ξ̃

(l)
a Ξ̃

(l)
µν

)
ψ̄aγ

µ
γ

ν
ψa, (2.6)

where the index a denotes flavor, ξ
(l)
a and ξ̃

(l)
a are dimensionless coupling constants, Ξ

(l)
µν are the

Weyl eigenforms with negative norm that satisfy equations (2.3) and (2.5) and Ξ̃
(l)
µν = εµν

ρσ Ξ
(l)
ρσ .

This terms can be generalized by using the fact that
√

λ (l)/MPl is dimensionless and introducing
parameters r and r̃, required to be greater than −1, and writing

L f = ∑
a

3

∑
l=1

√
λ (l)

ξ
(l)
a

(√
λ (l)

MPl

)r

Ξ
(l)
µν + ξ̃

(l)
a

(√
λ (l)

MPl

)r̃

Ξ̃
(l)
µν

 ψ̄aγ
µ

γ
ν
ψa, (2.7)

which coincides with (2.6) when r = r̃ = 1. Expression (2.7) is the one that is used in the rest of
the manuscript.

3. Phenomenology ready expressions

In this work we will only consider the expressions heeded to deal with experiments to be
carried out on Earth, thus, we are in the Newtonian regime, where the space-time metric is taken as
flat metric ηµν plus a perturbation characterized by the Newtonian Potential whose source ρ is the
energy density.

The only non-zero components of Weyl at this regime are

W0i
0 j = ∂i∂

j
ΦN (3.1)

Wi j
kl =−4δ

[k
[i ∂ j]∂

l]
ΦN (3.2)

where i, j,k, l run from 1 to 3 and ΦN is the Newtonian potential (see [6]). As expected from
Weyl’s symmetries [7], expressions (3.1) and (3.2) represent the same 3×3 real symmetric traceless
matrix. The next step is to find λ (l) and q(l)

i such that

(∂i∂
j
ΦN)q(l)

j = λ
(l)q(l)

i . (3.3)

In this regime the Weyl eigenforms Ξ
(l)
µν and Ξ̃

(l)
µν are related to the q(l)

i via

q(l)
i = Ξ

(l)
0i = εi

jk
Ξ̃

(l)
jk , (3.4)
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where εi jk is the totally antisymmetric tensor with ε123 = 1, and the other components satisfy

Ξ
(l)
i j = Ξ̃

(l)
0i = 0. (3.5)

Also notice that the conditions (2.3) and (2.5) will be satisfied if δ i jq(l)
i q(l)

i = 1. We have calculated
the first post-Newtonian corrections in order to study the effects due to moving sources, but we refer
the interested reader to Ref. [6].

Now we note that the factor ψ̄γµγνψ also appears in the term −Hµν ψ̄[γµ ,γν ]ψ/4 of the
Standard Model Extension (SME) [2]. This allows us to connect L f [given in equation (2.7)] with
the SME term by identifying Hµν with

Hµν =−2∑
a

3

∑
l=1

√
λ (l)

ξ
(l)
a

(√
λ (l)

MPl

)r

Ξ
(l)
µν + ξ̃

(l)
a

(√
λ (l)

MPl

)r̃

Ξ̃
(l)
µν

 . (3.6)

Note however that, in contrast with the SME scheme, the object that plays the role of Hµν is
dynamical and depends on the surrounding gravitational sources. Using the formulation of the
non-relativistic hamiltonian in the SME [8], the non-relativistic hamiltonian due to the coupling
L f of a particle with flavor a is

HNR = ε
i jk

[
1
2

(
σi +

(
~σ ·

~P
m

)
Pi

m

)
H jk +

(
1− 1

2
|~P|2

m2

)
Pi

m
σ jH0k

]
, (3.7)

where ~P and m are respectively the momentum and mass of the test particle, the σi stand for the
Pauli matrices, the arrow represent 3-vector and · is the standard euclidian interior product.

Finally, in order to express the non-relativistic hamiltonian (3.7) in a standard 3-vector notation
is useful to define

Di ≡
1
2

εi jkH jk =−2∑
a

3

∑
l=1

√
λ (l)ξ̃

(l)
a

(√
λ (l)

MPl

)r̃

q(l)
i , (3.8)

Fi ≡ H0i =−2∑
a

3

∑
l=1

√
λ (l)ξ

(l)
a

(√
λ (l)

MPl

)r

q(l)
i , (3.9)

where equations (3.4) and (3.5) are used. Then,

HNR = ~σ ·~D+

(
~σ ·

~P
M

)(
~D ·

~P
M

)
+
(

1− 1
2

P2

M2

)
~P
M
·~σ ×~F , (3.10)

where ~D and ~F are the 3-vector formed with Di and Fi, respectively, and× is the standard euclidian
exterior product.

4. Conclusions and Experimental Outlook

We have presented a concrete proposal for possible phenomenological manifestations of Quan-
tum Gravity based on the idea that space-time may have a granular structure that respects the
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Lorentz symmetry. In developing the model, we were forced to introduce the space orientation,
through the volume 4-form, leading us to consider the possibility that the discrete symmetries,
may play a non-trivial role in the fundamental theory of Quantum Gravity. We presented, a non-
relativistic hamiltonian that can be used to test the model experimentally. However, before em-
barking on an experimental search, some important points need to be considered. First, as the Weyl
tensor is related to tidal forces, experiments carried out in different locations must be compared
with great care. Second, as all the terms of the non-relativistic hamiltonian involve the spin of the
particle, the experiments need to involve polarized matter, which must be arranged in a way that
the magnetic effects do not hide, or mimic, the effects one is searching for. This seems in principle
a very difficult task, however, it should be pointed out that torsion balances with non-magnetic
polarized matter have been constructed by the group led by E.G. Adelberger [9], opening a win-
dow where this phenomenological model can start to be tested. We must of course look for other
situation from where interesting bounds might be obtained.
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