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The impressive amount of good quality data of last decade has shed new light on the effective
picture of the Universe. Type Ia Supernovae (SNeIa), anisotropiesin the CMBR, and matter power
spectrum inferred from large galaxy surveys represent the strongest evidences for a radical revision
of the Cosmological Standard Model. In particular, theconcordanceΛCDM modelpredicts that
baryons contribute only∼ 4% of the total matter - energy budget, while the exoticCold Dark Matter
(CDM) represents the bulk of the matter content (∼ 25%) and the cosmological constantΛ plays
the role of the so called Dark Energy (∼ 70%).

Although being the best fit to a wide range of data, theΛCDM model is affected by strong
theoretical shortcomings that have motivated the search for alternative models [1]. Dark Energy
models mainly rely on the implicit assumption that Einstein’s General Relativity (GR)is the correct
theory of gravity.

Nevertheless, its validity on the larger astrophysical and cosmological scales has never been
tested, and it is therefore conceivable that both cosmic speed up and Dark Matter represent sig-
nals of a breakdown in our understanding of the gravitational interaction.Following this line of
thinking, the choice of a generic functionf (R) as the gravitational Lagrangian, whereR is the
Ricci scalar, can be derived by matching the data and by the "economic" requirement that no exotic
ingredients have to be added. This is the underlying philosophy of what are referred to asf (R)

gravity [2]. From a theoretical standpoint, different issues suggest that higher order terms must
necessarily enter the gravity Lagrangian. In fact, such terms come out asone - loop corrections in
field quantization on curved spacetimes and they seem unescapable in any perturbation approach
to achieve a self - consistent theory of quantum gravity [3, 4].

It is worth noting that Solar System experiments show the validity of GR at thesescales so that
f (R) theories should not differ too much from GR at this level [5]. In other words, the PPN limit
of such models must not violate the experimental constraints on Eddington parameters. A positive
answer to this request has been recently achieved for severalf (R) theories [6], nevertheless it has
to be remarked that this debate is far to be definitively concluded. Although higher order gravity
theories have received much attention in cosmology, since they are naturallyable to give rise to
the accelerating expansion (both in the late [8] and in the early [9] universe), it is possible to
demonstrate thatf (R) theories can also play a major role at astrophysical scales [10]. In fact,
modifying the gravity action can affect the gravitational potential in the low energy limit.

Provided that the modified potential reduces to the Newtonian one on the SolarSystem scale,
this implication could represent an intriguing opportunity rather than a shortcoming for f (R) the-
ories. In fact, a corrected gravitational potential could offer the possibiloty to fit galaxy rotation
curves without the need of Dark Matter. In addition, one could work out aformal analogy between
the corrections to the Newtonian potential and the usually adopted Dark Mattermodels. In order
to investigate the consequences off (R) theories on both cosmological and astrophysical scales, let
us first remind the basics of this approach.

From a mathematical viewpoint,f (R) theories generalize the Hilbert - Einstein Lagrangian
LHE =

√−gR asL =
√−g f(R) without assuminga priori the functional form of Lagrangian

density in the Ricci scalar. The field equations are obtained by varying with respect to the metric
components to get [2] :

f ′(R)Rαβ − 1
2

f (R)gαβ = f ′(R);µν (

gαµgβν −gαβ gµν
)

+TM
αβ (1)
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where the prime denotes derivative with respect to the argument andTM
αβ is the standard matter

stress - energy tensor. Defining thecurvature stress - energy tensoras

Tcurv
αβ =

1
f ′(R)

{

1
6

gαβ
[

f (R)−R f′(R)
]

+ f ′(R);µν(gαµgβν −gαβ gµν)

}

. (2)

Eqs.(1) may be recast in the Einstein - like form as :

Gαβ = Rαβ − 1
2

gαβ R= Tcurv
αβ +TM

αβ / f ′(R) (3)

where matter non - minimally couples to geometry through the term 1/ f ′(R). The presence of term
f ′(R);µν renders the equations of fourth order, while, forf (R) = R, the curvature stress - energy
tensorTcurv

αβ identically vanishes and Eqs.(3) reduce to the standard second - order Einstein field
equations. As it is clear, from Eq.(3), the curvature stress - energy tensor formally plays the role of
a further source term in the field equations so that its effect is the same as that of an effective fluid
of purely geometrical origin.

However the metric variation is just one of the approaches towardsf (R) gravity: in fact, one
can face the problem also considering the so called Palatini approach (e.g. see [11, 12]) where
the metric and connection fields are considered independent. Apart fromsome differences in the
interpretation, one can deal with a fluid of geometric origin in these case as well.

The scheme outlined above provides all the ingredients we need to tackle with the dark side
of the Universe. Depending on the scales, such a curvature fluid can play the role of Dark Matter
and Dark Energy. From the cosmological point of view, in the standard framework of a spatially
flat homogenous and isotropic Universe, the cosmological dynamics is determined by its energy
budget through the Friedmann equations. In particular, the cosmic acceleration is achieved when
the r.h.s. of the acceleration equation remains positive (in physical units with 8πG = c = 1) :

ä
a

= −1
6

(ρtot +3ptot) , (4)

wherea is the scale factor,H = ȧ/a the Hubble parameter, the dot denotes derivative with respect to
cosmic time, and the subscripttot denotes the sum of the curvature fluid and the matter contribution
to the energy density and pressure. From the above relation, the acceleration condition, for a dust
dominated model, leads to :

ρcurv+ρM +3pcurv < 0→ wcurv < − ρtot

3ρcurv
(5)

so that a key role is played by the effective quantities :

ρcurv =
8

f ′(R)

{

1
2

[

f (R)−R f′(R)
]

−3HṘ f′′(R)

}

, (6)

and

wcurv = −1+
R̈ f′′(R)+ Ṙ

[

Ṙ f′′′(R)−H f ′′(R)
]

[ f (R)−R f′(R)]/2−3HṘ f′′(R)
. (7)

As a first simple choice, one may neglect ordinary matter and assume a power- law form f (R) =

f0Rn, with n a real number, which represents a straightforward generalization of theEinstein GR in

3
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Figure 1: The Hubble diagram of 20 radio galaxies together with the “gold" sample of SNeIa, in term of the
redshift as suggested in [13]. The best fit curve refers to thef (R) - gravity model without Dark Matter.

the limit n = 1. One can find power - law solutions fora(t) providing a satisfactory fit to the SNeIa
data and a good agreement with the estimated age of the Universe in the range1.366< n < 1.376
[7]. On the other side, one can develop the same analysis in presence of the ordinary matter
component, although in such a case, one has to numerically solve field equations. Then, it is still
possible to confront the Hubble flow described by such a model with the Hubble diagram of SNeIa.
The data fit turns out to be significant (see Fig. 1) improving theχ2 value and, it fixes the best fit
value atn = 3.46 when it is accounted only the baryon contributeΩb ≈ 0.04 (according with BBN
prescriptions). It has to be remarked that considering Dark Matter doesnot modify the result of
the fit, supporting the assumption of no need for Dark Matter in this model. Fromthe evolution of
the Hubble parameter in term of redshift one can even calculate the Age of Universe. The best fit
valuen = 3.46 providestuniv≈ 12.41 Gyr. It is worth noting that consideringf (R) = f0Rn gravity
represents only the simplest generalization of Einstein theory.

In other words, it has to be considered thatRn - gravity represents just a working hypothesis
as there is no overconfidence that such a model is the correct final gravity theory. In a sense, we
want only to suggest that several cosmological and astrophysical results can be well interpreted
in the realm of a power law extended gravity model. As matter of fact, this approach gives no
rigidity about the value of the powern, although it would be preferable to determine a model
capable of working at different scales. Furthermore, we do not expect to be able to reproduce
the whole cosmological phenomenology by means of a simple power law model, which has been
demonstrated to be not sufficiently versatile [14].

For example, we can easily demonstrate that this model fails when it is analyzedwith respect to
its capability of providing the correct evolutionary conditions for the perturbation spectra of matter
overdensity [15]. This point is typically addressed as one of the most important issues which
suggest the need for Dark Matter. In fact, if one wants to discard this component, it is crucial to
match the observational results related to the Large Scale Structure of the Universe and the Cosmic
Microwave Background which show, respectively at late time and at earlytime, the signature of
the initial matter spectrum. As important remark, we note that the quantum spectrum of primordial
perturbations, which provides the seeds of matter perturbations, can be positively recovered in the
framework ofRn - gravity. In fact, f (R) ∝ R2 can represent a viable model with respect to CMBR
data and it is a good candidate for cosmological Inflation. To develop the matter power spectrum
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Figure 2: Scale factor evolution of the growth indexf : (left) modified gravity, in the caseΩm = Ωbar ∼
0.04, for the SNeIa best fit model withn = 3.46, (right) the same evolution in the case of aΛCDM
model. In the case ofRn - gravity it is shown also the dependence on the scalek. The three cases
k = 0.01, 0.001, 0.0002 have been checked. Only the latter case shows a very small deviation from the
leading behavior.

suggested by this model, we resort to the equation for the matter contrast obtained in [15] in the
case of fourth order gravity. This equation can be deduced considering the conformal Newtonian
gauge for the perturbed metric [15] :

ds2 = (1+2ψ)dt2 − a2(1+2φ)Σ3
i =1(dxi) . (8)

In GR, it isφ = −ψ , since there is no anisotropic stress; in extended gravity, this relation breaks,
in general, and thei 6= j components of field equations give new relations betweenφ andψ . In
particular, for f (R) gravity, due to nonvanishingfR;i; j (with i 6= j), theφ − ψ relation becomes
scale dependent. Instead of the perturbation equation for the matter contrast δ , we provide here its
evolution in term of the growth indexf = d lnδ/d lna, that is the directly measured quantity at
z∼ 0.15 :

f ′(a)− f (a)2

a
+

[

2
a

+
1
a

E′(a)

]

f (a)− 1−2Q
2−3Q

· 3Ωma−4

nE(a)2R̃n−1
= 0, (9)

E(a) = H(a)/H0, R̃ is the dimensionless Ricci scalar, and

Q = −2 fRRc2k2

fRa2 . (10)

For n = 1 the previous expression gives the ordinary growth index relation for the Cosmological
Standard Model. It is clear, from Eq.(9), that such a model suggests a scale dependence of the
growth index which is contained into the corrective termQ so that, whenQ→ 0, this dependence
can be reasonably neglected. In the most general case, one can resort to the limit aH < k <

10−3hMpc−1, where Eq.(9) is a good approximation, and non-linear effects on the matterpower
spectrum can be neglected.
Studying numerically Eq.(9), one obtains the growth index evolution in term of the scale factor;
for the sake of simplicity, we assume the initial conditionf (als) = 1 at the last scattering surface
as in the case of matter-like domination. The results are summarized in Fig.(2), where we show, in
parallel, the growth index evolution inRn - gravity and in theΛCDM model.

In the case ofΩm = Ωbar ∼ 0.04, one can observe a strong disagreement between the expected
rate of the growth index and the behavior induced by power law fourth order gravity models. This
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negative result is evidenced by the predicted value off (az=0.15), which has been observationally
estimated by the analysis of the correlation function for 220000 galaxies in 2dFGRS dataset sam-
ple at the survey effective depthz = 0.15. The observational result suggestsf = 0.58±0.11 [16],
while our model givesf (az=0.15) ∼ 0.117 (k = 0.01), 0.117 (k = 0.001), 0.122 (k = 0.0002).
Although this result seems frustrating with respect to the underlying idea to discard the dark compo-
nents from the cosmological dynamics, it does not give substantial improvement in the case ofRn -
gravity model plus Dark Matter. In fact, it is possible to show that, even in this case, the growth in-
dex prediction is far to be in agreement with theΛCDM model and again, at the observational scale
z = 0.15, there is not enough growth of perturbations to match the observed Large Scale Structure.
In such a case one obtains :f (az=0.15) ∼ 0.29 (k = 0.01), 0.29 (k = 0.001), 0.31 (k = 0.0002),
which are quite increased with respect to the previous case but still very far from the experimental
estimate. It is worth noting that no significantly different results are obtainedif one varies the power
n, of course in the case ofn→ 1 one recovers the standard behavior if a cosmological constant con-
tribution is added. These results seem to suggest that an extended gravitymodel which considers
a simple power law of Ricci scalar, although cosmologically relevant at late times, is not viable to
describe the evolution of Universe at all scales. In other words, sucha scheme seems too simple
to give account for the whole cosmological phenomenology. In fact, in [15] a gravity Lagrangian
considering an exponential correction to the Ricci scalarf (R) = R+ Aexp(−BR) (with A, B two
constants), gives more interesting results and displays a grow factor ratewhich is in agreement with
the observational results at least in the Dark Matter case. To corroborate this point of view, one has
to consider that when the choice off (R) is performed starting from observational data (pursuing
an inverse approach) as in [17], the reconstructed Lagrangian is a non - trivial polynomial in term
of the Ricci scalar. A result which directly suggests that the whole cosmological phenomenology
can be accounted only with a suitable non - trivial function of the Ricci scalar rather than a simple
power law function. As matter of fact, the results obtained with respect to the study of the matter
power spectra in the case ofRn - gravity do not invalidate the whole approach, since they can be
referred to the too simple form of the model.

The results obtained at cosmological scales motivates further analysis off (R) theories. In a
sense, one is wondering whether the curvature fluid, which works as Dark Energy, can also play the
role of effective Dark Matter thus yielding the possibility of recovering the observed astrophysical
phenomenology by the only visible matter. It is well known that, in the low energylimit, higher
order gravity implies a modified gravitational potential. Therefore, in our discussion, a fundamental
role is played by the new gravitational potential descending from the givenfourth order gravity
theories we are referring to. By considering the case of a pointlike massmand solving the vacuum
field equations for a Schwarzschild - like metric, one gets from a theoryf (R) = f0Rn, the modified
gravitational potential [10] :

Φ(r) = −Gm
2r

[

1+

(

r
rc

)β
]

(11)

where

β =
12n2−7n−1−

√
36n4 +12n3−83n2 +50n+1
6n2−4n+2

(12)

which corrects the ordinary Newtonian potential by a power - law term. In particular, this correction
sets in on scales larger thanrc which value depends essentially on the mass of the system. The

6
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corrected potential (11) reduces to the standardΦ ∝ 1/r for n = 1 as it can be seen from the
relation (12).

The result (11) deserves some comments. As discussed in detail in [10], we have assumed the
spherically symmetric metric and imposed it into the field equations (1) consideredin the weak field
limit approximation. As a result, we obtain a corrected Newtonian potential whichaccounts for the
strong non-linearity of gravity related to the higher-order theory. However, we have to notice that
Birkhoff’s theorem does not hold, in general, forf (R) gravity (see [18] for a demonstration) but
other spherically symmetric solutions than the Schwarzschild one can be found in these extended
theories of gravity [19].

The generalization of Eq.(11) to extended systems is achieved by dividing the system in in-
finitesimal mass elements and summing up the potentials generated by each single element. In the
continuum limit, we replace the sum with an integral over the mass density of system taking care of
eventual symmetries of the mass distribution (see [10] for details). Once the gravitational potential
has been computed, one may evaluate the rotation curvev2

c(r) and compare it with the data. For
extended systems, one has typically to resort to numerical techniques, butthe main effect may be
illustrated by the rotation curve for the pointlike case, that is:

v2
c(r) =

Gm
2r

[

1+(1−β )

(

r
rc

)β
]

. (13)

Compared with the Newtonian resultv2
c = Gm/r, the corrected rotation curve is modified by the

addition of the second term in the r.h.s. of Eq.(13). For 0< β < 1, the corrected rotation curve
is higher than the Newtonian one. Since measurements of spiral galaxies rotation curves signals a
circular velocity higher than those which are predicted on the basis of the observed luminous mass
and the Newtonian potential, the above result suggests the possibility that ourmodified gravitational
potential may fill the gap between theory and observations without the need of additional Dark
Matter.

It is worth noting that the corrected rotation curve is asymptotically vanishing as in the New-
tonian case, while it is usually claimed that observed rotation curves are flat(i.e., asymptotically
constant). Actually, observations do not probevc up to infinity, but only show that the rotation
curve is flat within the measurement uncertainties up to the last measured point.This fact by no
way excludes the possibility thatvc goes to zero at infinity. In order to observationally check the
above result, we have considered a sample of LSB galaxies with well measured HI + Hα rotation
curves extending far beyond the visible edge of the system. LSB galaxies are known to be ideal
candidates to test Dark Matter models since, because of their high gas content, the rotation curves
can be well measured and corrected for possible systematic errors by comparing 21 - cm HI line
emission with optical Hα and [NII ] data. Moreover, they are supposed to be Dark Matter dom-
inated so that fitting their rotation curves without this elusive component is a strong evidence in
favor of any successful alternative theory of gravity.

Our sample contains 15 LSB galaxies with data on both the rotation curve, the surface mass
density of the gas component andR- band disk photometry extracted from a larger sample selected
by de Blok & Bosma [20]. We assume the stars are distributed in an infinitely thin and circularly
symmetric disk with surface densityΣ(r) = ϒ⋆I0exp(−r/rd) where the central surface luminosity

7
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Figure 3: Best fit theoretical rotation curve superimposed to the datafor the LSB galaxy NGC 4455 (left)
and NGC 5023 (right). To better show the effect of the correction to the Newtonian gravitational potential,
we report the total rotation curvevc(r) (solid line), the Newtonian one (short dashed) and the corrected term
(long dashed).

I0 and the disk scalelengthrd are obtained from fitting to the stellar photometry. The gas surface
density has been obtained by interpolating the data over the range probed by HI measurements
and extrapolated outside this range. When fitting to the theoretical rotation curve, there are three
quantities to be determined, namely the stellar mass - to - light (M/L) ratio,ϒ⋆ and the theory pa-
rameters(β , rc). It is worth stressing that, while fit results for different galaxies should give the
sameβ , rc is related to one of the integration constants of the field equations. As such, itis not a
universal quantity and its value must be set on a galaxy - by - galaxy basis. However, it is expected
that galaxies having similar properties in terms of mass distribution have similar values ofrc so that
the scatter inrc must reflect somewhat the scatter in the circular velocities. In order to match the
model with the data, we perform a likelihood analysis determining for each galaxy, using, as fitting
parametersβ , logrc (with rc in kpc) and the gas mass fraction1 fg. As it is evident considering the
results from the different fits, the experimental data are successfully fitted by the model (see [10]
for details). In particular, for the best fit range ofβ (β = 0.80±0.08), one can conclude thatRn

gravity with 2.3 < n < 5.3 (best fit valuen = 3.2 which well overlaps the above mentioned range
of n fitting SNeIa Hubble diagram) can be a good candidate to solve the missing matter problem in
LSB galaxies without any Dark Matter.

At this point, it is worth wondering whether a link may be found betweenRn gravity and
the standard approach based on Dark Matter haloes since both theories fit equally well the same
data. As a matter of fact, it is possible to define aneffective Dark Matter haloby imposing that its
rotation curve equals the correction term to the Newtonian curve induced byRn gravity. Mathemat-
ically, one can split the total rotation curve derived fromRn gravity asv2

c(r) = v2
c,N(r)+ v2

c,corr(r)
where the second term is the correction. Considering, for simplicity a spherical halo embedding
a thin exponential disk, we may also write the total rotation curve asv2

c(r) = v2
c,disk(r)+ v2

c,DM(r)
with v2

c,disk(r) the Newtonian disk rotation curve andv2
c,DM(r) = GMDM(r)/r the Dark Matter one,

1This is related to theM/L ratio asϒ⋆ = [(1− fg)Mg]/( fgLd) with Mg = 1.4MHI the gas (HI + He) mass,Md = ϒ⋆Ld

andLd = 2πI0r2
d the disk total mass and luminosity.
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MDM(r) being its mass distribution. Equating the two expressions, we get :

MDM(η) = Mvir

(

η
ηvir

)

2β−5η−β
c (1−β )η

β−5
2 I0(η)−Vd(η)

2β−5η−β
c (1−β )η

β−5
2 I0(ηvir)−Vd(ηvir)

. (14)

with η = r/rd, Σ0 = ϒ⋆i0, Vd(η) = I0(η/2)K0(η/2)× I1(η/2)K1(η/2)2 and :

I0(η ,β ) =
∫ ∞

0
F0(η ,η ′,β )k3−β η ′ β−1

2 e−η ′
dη ′ (15)

with F0 only depending on the geometry of the system and “vir" indicating virial quantities.
Eq.(14) defines the mass profile of an effective spherically symmetric DarkMatter halo whose
ordinary rotation curve provides the part of the corrected disk rotation curve due to the addition of
the curvature corrective term to the gravitational potential. It is evident that, from an observational
viewpoint, there is no way to discriminate between this dark halo model andRn gravity.

Having assumed spherical symmetry for the mass distribution, it is immediate to compute
the mass density for the effective dark halo asρDM(r) = (1/4πr2)dMDM/dr. The most interesting
features of the density profile are its asymptotic behaviors that may be quantified by the logarithmic
slopeαDM = d lnρDM/d ln r which can be computed only numerically as function ofη for fixed
values ofβ (or n). As expected,αDM depends explicitly onβ , while (rc,Σ0, rd) enter indirectly
throughηvir . The asymptotic values at the center and at infinity denoted asα0 and α∞ result
particularly interesting. It turns out thatα0 almost vanishes so that in the innermost regions the
density is approximately constant. Indeed,α0 = 0 is the value corresponding to models having an
inner core such as the cored isothermal sphere and the Burkert model [21].

Moreover, it is well known that galactic rotation curves are typically best fitted by cored dark
halo models. On the other hand, the outer asymptotic slope is between−3 and−2, that are values
typical of most dark halo models in literature. In particular, forβ = 0.80 one finds(α0,α∞) =

(−0.002,−2.41), which are quite similar to the value for the Burkert model(0,−3). It is worth
noting that the Burkert model has been empirically proposed to provide a good fit to the LSB
and dwarf galaxies rotation curves. The values of(α0,α∞) we find for the best fit effective dark
halo therefore suggest a possible theoretical motivation for the Burkert-like models. Due to the
construction, the properties of the effective Dark Matter halo are closelyrelated to the disk one. As
such, we do expect some correlation between the dark halo and the disk parameters. To this aim,
exploiting the relation between the virial mass and the disk parameters , one canobtain a relation
for the Newtonian virial velocityVvir = GMvir/rvir :

Md ∝
(3/4πδthΩmρcrit )

1−β
4 r

1+β
2

d ηβ
c

2β−6(1−β )G
5−β

4

V
5−β

2
vir

I0(Vvir ,β )
. (16)

We have numerically checked that Eq.(16) may be well approximated asMd ∝ Va
vir which has the

same formal structure as the baryonic Tully - Fisher (BTF) relationMb ∝ Va
f lat with Mb the total

(gas + stars) baryonic mass andVf lat the circular velocity on the flat part of the observed rotation
curve. In order to test whether the BTF can be explained thanks to the effective Dark Matter halo
we are proposing, we should look for a relation betweenVvir andVf lat . This is not analytically

2HereIl andKl , with l = 1,2 are the Bessel functions of first and second type.
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possible since the estimate ofVf lat depends on the peculiarities of the observed rotation curve such
as how far it extends and the uncertainties on the outermost points. For given values of the disk
parameters, we therefore simulate theoretical rotation curves for some values of rc and measure
Vf lat finally choosing the fiducial value forrc that gives a value ofVf lat as similar as possible to the
measured one. Inserting the relation thus found betweenVf lat andVvir into Eq.(16) and averaging
over different simulations, we finally get :

logMb = (2.88±0.04) logVf lat +(4.14±0.09) (17)

while a direct fit to the observed data gives [22] :

logMb = (2.98±0.29) logVf lat +(3.37±0.13) . (18)

The slope of the predicted and observed BTF are in good agreement thusleading further support to
our approach. The zeropoint is markedly different with the predicted one being significantly larger
than the observed one. However, it is worth stressing that both relations fit the data with similar
scatter. A discrepancy in the zeropoint can be due to our approximate treatment of the effective
halo which does not take into account the gas component. Neglecting this term,we should increase
the effective halo mass and henceVvir which affects the relation withVf lat leading to a higher than
observed zeropoint. Indeed, the larger isMg/Md, the more the points deviate from our predicted
BTF thus confirming our hypothesis. Given this caveat, we can conclude,with confidence, thatRn

gravity offers a theoretical foundation even for the empirically found BTFrelation.
Although the results outlined along this paper are referred to a simple choice of fourth order

gravity models (f (R) = f0Rn) they could represent an interesting paradigm. In fact, even if such a
model is not suitable to provide the correct form of the matter power spectra, and this suggests that
a more complicated Lagrangian is needed to reproduce the whole dark sector phenomenology at
all scales, we have shown that considering extensions of GR can allow to explain some important
issues of cosmological and astrophysical phenomenology. We have seen that extended gravity
models can reproduce SNeIa Hubble diagram without Dark Matter, givingsignificant predictions
even with regard to the age of Universe. In addition, the modification of the gravitational potential
which arises as a natural effect in the framework of higher order gravity can represent a fundamental
tool to interpret the flatness of rotation curves of LSB galaxies. Furthermore, if one considers the
model parameters settled by the fit over the observational data on LSB rotation curves, it is possible
to construct a phenomenological analogous of Dark Matter halo whose shape is similar to the one
of the Burkert model. Since the Burkert model has been empirically introduced to give account of
the Dark Matter distribution in the case of LSB and dwarf galaxies, this resultcould represent an
interesting achievement since it gives a theoretical foundation to such a model.

By investigating the relation among dark halo and the disk parameters, we havededuced a
relation betweenMd andVf lat which reproduces the baryonic Tully - Fisher. In fact, exploiting
the relation between the virial mass and the disk parameters, one can obtain a relation for the
virial velocity which can be satisfactory approximated asMd ∝ Va

vir . Even such a result seems
very intriguing since it gives again a theoretical interpretation for a phenomenological relation. As
a matter of fact, although not definitive, these phenomenological issues onf (R) can represent a
viable approach for future investigations and in particular support the quest for a unified view of
the dark side of the Universe.
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In summary, these results motivate a careful search for a fundamental theory of gravity able
to explain the full cosmic dynamics with the only two main ingredients which we can directly
experience, namely the background gravity and the baryonic matter.
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