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The object of this contribution is to provide an illustration of the impact of modified dispersion
relations with respect to relativistic or hydrodynamic ones. The example studied here is the quasi-
normal mode (QNM) spectrum of a toy model for an acoustic black hole in a (1+1)-dimensional
flow of a Bose–Einstein condensate (BEC). Acoustic black holes in the hydrodynamic limit, just
like general relativistic black holes, have no quasinormal modes in 1+1 dimensions, whereas in
3+1 a discrete QNM spectrum appears. However, when using the full or modified (Bogoliubov)
dispersion relation, these (1+1)-dimensional BEC black holes present a QNM spectrum consist-
ing of a continuous region in the complex frequency plane. A straightforward speculation about
similar effects in high-energy physics scenarios with modified dispersion relations will briefly be
discussed.
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1. Introduction

The presence of quasinormal mode frequencies in the gravitational radiation of black holes
might provide a direct experimental confirmation of the existence and main properties of black
holes in the near future. The usual analysis of quasinormal modes of black holes [2, 1] is based
on general relativity (GR), i.e., on a classical model. However, it could be that quantum effects
become important not only for physical processes ocurring near a singularity (where they are com-
monly expected), but also for the physics associated with the presence of horizons, no matter how
big or small the black hole in question. This would be the case if spacetime at small scales shared
some of the properties found in analogue gravity models in condensed matter (see, e.g.,[3]). As
suggested by these models, a possible way for implementing these quantum corrections is to con-
sider modified dispersion relations, associated to violations of Lorentz invariance at high energies
[4].

The aim of this contribution is to illustrate the impact that modifications of the dispersion re-
lation can have on the QNM spectrum through a simple toy model [5]. The toy model consists
of a (1+1)-dimensional flow of a Bose–Einstein condensate with a black hole horizon. In the hy-
drodynamic limit, these acoustic black holes have a quasinormal mode spectrum qualitatively very
similar to the one that is found in general relativity [6]: There are no quasinormal modes at all in
1+1 dimensions, while calculations in 3+1 models yield a discrete spectrum [2, 1]. In this contri-
bution, we will discuss the calculation of QNMs in this (1+1)-dimensional BEC model when going
beyond the hydrodynamic or relativistic limit. We will use the full Bogoliubov dispersion relation,
thereby in a certain sense incorporating quantum corrections originating from (a linearization of)
the Gross–Pitaevskii equation. The surprising result is that such a spectrum not only exists, in spite
of the (1+1)-dimensional setting, but consists of a continuous region of the complex frequency
plane.

The structure of this contribution is the following. In the first section we will briefly summarise
what quasinormal modes of a general relativistic black hole are and how they are calculated. We
will emphasise the absence of QNMs in 1+1 dimensions, and the discrete spectrum in 3+1, and
indicate that these results are also valid for acoustic black holes in the hydrodynamic limit. In the
second section we will describe the toy model for an acoustic black hole in a (1+1)-dimensional
BEC flow, and indicate how QNMs can be calculated in this model. We will lay particular emphasis
on the difference between the hydrodynamic or relativistic dispersion relation and the full Bogoli-
ubov dispersion relation, and also highlight the boundary condition for the QNM problem, since
these are slightly different from the GR case. Finally, in the third section we will show and discuss
the result of this calculation, namely that the QNM spectrum turns out to consist of a continuous
region in the complex frequency plane.

2. Quasinormal modes of black holes

A tentative definition of QNMs of a gravitational black hole could simply be the following:
QNMs of a black hole are the relaxation modes or energy dissipation modes that characterise the
pulsations of the black hole after perturbation. Since QNMs are relaxation modes, this means
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that we will have to work with complex frequencies ω , where Re(ω) indicates the time distance
between subsequent pulses and Im(ω) the exponential decay of the envelope.

The relation with gravitational radiation is the following. According to general relativity, a
perturbed black hole emits gravitational radiation in three phases [2, 1]:

1. The initial pulse depends heavily on the particular form of the perturbation.

2. In the intermediate phase, a damped oscillatory phase sets in, in which a discrete set of
complex frequencies ω is excited. Although the actual selection of which frequencies are
excited –usually, a single frequency is clearly dominant– depends on the concrete situation
or perturbation, the spectrum of possible frequencies depends only on the properties of the
black hole itself.

3. Finally, a polynomial tail characterises the return to equilibrium.

Obviously, the discrete set of frequencies of the intermediate phase corresponds precisely to the
QNM spectrum that we are interested in here.

2.1 QNMs in GR black holes

The way in which the QNMs of a black hole are calculated in GR is a complex numerical prob-
lem, see e.g.[2, 1]. But the essential idea is quite straightforward. The calculation of quasinormal
modes u is an eigenvalue problem in which one must solve a wave equation of the type

∂ 2

∂ t2 u+
(
− ∂ 2

∂x2 +Veff(x)
)

u = 0. (2.1)

For a Schwarschild black hole, the x coordinate should be understood as the radial tortoise co-
ordinate r∗, and the effective potential Veff would be the Regge–Wheeler or the Zerilli potential,
depending on the type (axial or polar, respectively) of perturbations one is looking at. For the prob-
lem to be well-defined, boundary conditions must be imposed. Since QNMs are decay modes, i.e.,
energy dissipation modes, they must be “outgoing”. Outgoing in this context means:

• at asymptotic infinity: directed towards the exterior of the system;

• at the horizon: directed towards the singularity.

Note that this second condition seems obvious because of the fact that horizons in GR are strict
one-way membranes. As we will see, when taking modifications of the dispersion relation into
account, this condition will have to be modified. In any case, both conditions can be summarised
by saying that in GR, “outgoing” means: directed towards the exterior of the spacetime region
connected to an asymptotic observer.

Let us illustrate this for the concrete case of the Schwarzschild black hole. If we write the
general form of a QNM as uω = e−iωt

∑ j A jeik jr∗ , where the sum is over all allowed wave numbers
k j for the frequency ω , then the outgoing condition for each particular mode uω(k) can be imposed
by requiring that this mode must have an associated group velocity vg(k) > 0 when r∗→+∞, and
vg(k) < 0 when r∗→−∞.

We will not go into further details on QNMs in GR, but just mention the two general results
that will be important for the rest of our discussion.
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1. In 1+1 dimensions, there are no QNMs. A possible way of understanding this is the following
[7]. The wave equation (2.1) is conformally invariant in 1+1 dimensions. Moreover, all two-
dimensional metrics are conformally equivalent, and in particular equivalent to a flat metric.
Hence all solutions of eq. (2.1) will be conformally equivalent to plane waves. Since these do
obviously not satisfy the requirement of being outgoing at both ends of the spacetime region
connected to an asymptotic observer, there are no QNMs in 1+1 dimensions.

2. In higher dimensions, and in particular in 3+1, the QNM spectrum is discrete [2, 1] (actually,
there are an infinite number of isolated QNMs). As mentioned earlier, the QNM spectrum
depends only on the properties of the black hole, and so for a Schwarzschild black hole, e.g.,
the actual numerical values of the associated frequencies depend only on the mass of the
black hole.

2.2 QNMs in acoustic black holes in the hydrodynamic limit

The results just mentioned for general relativistic black holes are also valid for acoustic black
holes in the hydrodynamic limit:

• There are no QNMs in 1+1 dimensions. This can be understood in the same sense of confor-
mality as mentioned in the GR case, or it can also explicitly be shown in terms of a connection
matrix, see [5])

• In higher dimensions, again, a discrete spectrum is obtained [6]. As a matter of fact, the
spectrum of a (3+1)-dimensional acoustic black hole in the spherically symmetric flow of
an incompressible fluid turns out to be very similar to the Schwarzschild QNM spectrum in
GR [6].

3. BEC black holes

3.1 Introduction and strategy

The basic idea of acoustic black holes [8, 9] is that acoustic perturbations in a moving per-
fect fluid (e.g., a fluid of condensed matter), obey d’Alembertian equations of movement that are
formally identical to the ones that describe a massless scalar field in a curved spacetime:

�gψ ≡ gµν
∇µ∇νψ =

1√
−g

∂µ(
√
−ggµν

∂νψ) = 0, (3.1)

where the metric

gµν ∝

(
−(c2−~v2) −~vT

−~v 1

)
. (3.2)

In other words, the acoustic perturbations see a geometry created by the background, i.e., by the
collective behaviour of the condensed matter system, and the trajectories followed by these acoustic
perturbations are precisely the null geodesics of the effective metric gµν .

The analogy can be taken further by observing that condensed matter systems are quantum
structures, and asking oneself: What if the (unknown) quantum structure underlying general rela-
tivity could also be described in terms of condensed matter?
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Part of the answer is of course that general relativity might then be just a low-energy emer-
gent approximation, i.e., an effective description of a collective phenomenon (see [10] and other
contributions to the present proceedings). For our present purposes, let it suffice to observe that in
condensed matter systems, the geometrical picture is valid only in a certain regime of approxima-
tion, the hydrodynamic approximation. But we also have a description of these condensed matter
systems which is more complete than this hydrodynamic approximation and which automatically
incorporates “quantum corrections”. The difference between the hydrodynamic approximation and
the more complete description is encoded in the difference between the corresponding dispersion
relations, which will form the basic tool for the rest of our discussion.

So, to wrap up, our strategy will be the following [3, 5]:

• First of all, assume that the quantum structure underlying GR can be described as a con-
densed matter system.

• Take a simple model, namely a configuration with a black hole horizon in a one-dimensional
flow of a Bose–Einstein condensate [11, 12, 13].

• Consider the difference between the hydrodynamic or relativistic dispersion relation, and the
full Bogoliubov dispersion relation.

• The metric description emerges in the hydrodynamic approximation.

• Study deviations from this metric description through the use of the full dispersion relation.

Before moving on to a discussion of the model and to the actual application of this strategy
to the QNM spectrum, let us make a small observation. QNMs are decaying dynamical modes.
Looking for QNMs only makes sense in systems which are devoid of unstable (exponentially in-
creasing) dynamical modes. The model which we will discuss has indeed been shown to be stable
in this sense, i.e., it is devoid of dynamical instabilities [3].

3.2 General description

A dilute gas of weakly interacting bosons can be described, in second quantization, in terms of
quantum operators Ψ̂. The condensation of such a gas into a Bose–Einstein condensate [14] allows
a clean separation between a macroscopic wave function ψ for the condensed state and an operator
ϕ̂ for the quantum excitations:

Ψ̂ = ψ + ϕ̂.

The evolution of the macroscopic wave function ψ is well approximated by the Gross–Pitaevskii
equation

ih̄
∂

∂ t
ψ(t,x) =

(
− h̄2

2m
∇

2 +Vext(x)+g |ψ(t,x)|2
)

ψ(t,x).

Use a hydrodynamic or Madelung representation

ψ =
√

neiθ/h̄e−iµt/h̄

for the wave function ψ , where n is the total condensate density and θ its phase. Then, linearise
the Gross–Pitaevskii equation and consider fluctuations of the macroscopic wave function ψ due
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to perturbations of the background. In terms of the condensate density n and phase θ , this means
that

n(x, t) = n0(x)+g−1ñ1(x, t), (3.3)

θ(x, t) = θ0(x)+θ1(x, t), (3.4)

where n0 and θ0 indicate the background values, and n1 and θ1 the perturbations (the coupling
constant g has been inserted for dimensional simplification of the further equations). It can easily
be shown that the time evolution of these perturbations can be written in terms of the hydrodynamic
quantities c, the speed of sound, and v, the velocity of the fluid flow. In particular, this time
evolution is described by the following differential equations:

∂t ñ1 =−∇ ·
(
ñ1v+ c2

∇θ1
)
, (3.5a)

∂tθ1 =−v ·∇θ1− ñ1 +
1
4

ξ
2
∇ ·
[

c2
∇

(
ñ1

c2

)]
. (3.5b)

Note that the speed of sound and the flow velocity in a BEC are local values determined by the
condensate density and the phase gradient, respectively:

c≡
√

gn0/m; v≡ ∇θ0/m.

Furthermore, in the differential equations (3.5), a term 1
4 ξ 2∇ ·

[
c2∇

(
ñ1/c2

)]
appears, which is

sometimes called the “quantum potential”. This quantum potential contains the healing length ξ , a
characteristic length scale of the condensate, which is proportional to h̄:

ξ ≡ h̄
mc

.

Since this term appears squared in eq. (3.5b), one might assume that in most circumstances it
can be neglected. The hydrodynamic approximation consists precisely of neglecting this quantum
potential term. This leads to a geometric picture because the differential equations (3.5) then reduce
to a continuity and an Euler equation, which can be manipulated to obtain the effective metric (3.2).

3.2.1 Hydrodynamic versus Bogoliubov dispersion relation

In this hydrodynamic limit, a relativistic dispersion relation is obtained:

(ω− vk)2 = c2k2.

When the quantum potential is taken into account, on the other hand, the full Bogoliubov dispersion
relation is found:

(ω− vk)2 = c2k2 +
1
4

c2
ξ

2k4,

which, from a relativistic point of view, is therefore a “modified” dispersion relation. Since this
full dispersion relation is of the 4th order in k, for each mode

uω = e−iωt
∑

j
A jeik jx,

there will be four contributions (k j, j = 1 . . .4):
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• two hydrodynamic modes, given (in the hydrodynamic approximation — see conditions be-
low) by k1,2 ' ω/(v± c),

• two additional, “non-hydrodynamic” modes.

When are these additional, non-hydrodynamic modes important? Starting from the full dispersion
relation, one can obtain the hydrodynamic approximation by writing ω as a series expansion in
terms of ξ k, and truncating the higher order terms, i.e.:

ω =

(
v± c

√
1+

1
4

ξ 2k2

)
k

' (v± c)k +
1
8

cξ
2k3 +O(ξ 3k3)' (v± c)k. (3.6)

For the series expansion to make sense, one must have ξ k � 1, i.e., the frequencies must be small
(compared to the characteristic scale of the system). The truncation moreover requires

cξ 2k2

8(v± c)
� 1.

This second condition is never satisfied around a horizon (c2 = v2). Therefore, near a horizon, the
non-hydrodynamic modes are always important, even at low frequencies.

This means basically that, whenever probing the configuration either with high frequencies, or
near the horizon (with any frequency), the geometrical picture will diffuminate and the underlying
quantum structure will appear to some degree.

3.3 The model

The model [3, 5] consists of a BEC with two homogeneous regions, separated by a transition
region of length L around the horizon at x = 0, see fig. 1.

In the right-hand side of the condensate, the flow has a normal subsonic regime (c > |v|),
and hence the hydrodynamic modes, which propagate at the speed of sound c, can move in any
direction, including upstream. At the left-hand side, the flow has become supersonic (c < |v|), so
the hydrodynamic modes are dragged along downstream by the background fluid. They therefore
inevitably move towards the left-hand side asymptotic region. One could thus interpret x→−∞ as
the singularity of the black hole.

Note that, from the metric (3.2), gtt changes sign at x = 0, i.e., it is negative or timelike for
x > 0 and positive or spacelike for x < 0. So x = 0 really represents a horizon.

3.4 Boundary conditions

We mentioned in section 2 that the boundary condition in the calculation of QNMs in GR is that
the QNMs must be outgoing at asymptotic infinity and at the horizon. However, in BEC black holes
with modified dispersion relations, the non-hydrodynamic modes can become “superluminal”, i.e.,
they can have a group velocity

vg ≡ Re
(

dω

dk

)
> c.
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Figure 1: Flow and sound velocity profile simulating a black hole-like configuration in a BEC. The profile
consists of two homogeneous regions with a transition region of width L around x = 0, see left-hand side
figure. The solid blue line represents the speed of sound c, the dashed red line the fluid velocity v. The
negative value of v indicates that the fluid is left-moving. For x > 0, the fluid is subsonic since c > |v|.
At x < 0 it has become supersonic. At x = 0, there is a sonic horizon. The right-hand side figure shows
the idealised profile with a step-like discontinuity at x = 0 (i.e., in the limit for L → 0), used for actual
calculations. The lower part of the right-hand side picture shows flow charts for the hydrodynamic modes.
In particular, in the supersonic region (x < 0), it is clearly seen that, since c < |v|, both hydrodynamic modes
will be dragged along by the background fluid towards x→−∞, i.e., towards the “singularity”.

In the presence of such superluminal modes, the horizon becomes permeable. Since this perme-
ability of the horizon is an essential consequence of modified dispersion relations, imposing an
outgoing boundary condition at the horizon would be contradictory. Moreover, with such super-
luminal modifications, there is no causal disconnection anymore between the part of spacetime
exterior to the horizon, and the part interior to the horizon. Therefore, the outgoing boundary con-
dition must be imposed, on the one hand, in the right asymptotic region (as before), but on the other
hand in the left asymptotic region instead of at the horizon.

So the outgoing boundary condition now simply becomes that a mode must have an associated
group velocity vg(k) > 0 when x→+∞, and vg(k) < 0 when x→−∞ (i.e., the same as in section 2
but expressed in terms of the coordinate x instead of r∗).

3.5 Calculation of QNMs with the full dispersion relation

In each homogeneous region, the modes can be written in terms of plane waves. To find
a global solution, the solutions for each side can be connected at the x = 0 discontinuity through
matching conditions. Four such matching conditions are obtained from integration of the eqs. (3.5),
see [3], and they are of the type

[θ1] = θ1|x=0+ − θ1|x=0− = 0.

To these four matching conditions, a certain number of constraints shoud be added due to the
boundary conditions. For each mode uω(k), by calculating the group velocity vg = Re

(dω

dk

)
, it

is easy to check whether it satisfies the boundary condition in the corresponding region. If not,
it should be prohibited, and hence this would mean one (additional) constraint. So the boundary
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condition add a number N of constraints to the matching conditions — in this case simply equal to
the number of prohibited modes — and the total number of constraints thus becomes 4+N.

On the other hand, we have an algebraic system with 8 degrees of freedom. Indeed, the density
perturbations can be written as

ñ1(x, t) =
4

∑
j=1

A jei(k jx−ωt)

at each side of the discontinuity, leading to a total of 8 free parameters A j. Note that the same is
valid for the phase perturbations:

θ1(x, t) =
4

∑
j=1

B jei(k jx−ωt),

however is is easy to show that B j = f (A j) and so this does not add any free parameters.
We thus have an algebraic system with 8 degrees of freedom and 4+N constraints, leading to

the following straightforward numerical algorithm.
Take a dense grid in the appropiate complex half-plane of frequencies ω connected to the

origin. In particular, in our notation, QNMs correspond to modes with Im(ω) < 0, so we’ll be
looking at the lower half-plane. For each value of ω on the grid, calculate the value of a function
F(ω), such that the roots of F(ω) correspond to QNMs. F(ω) can be defined as follows, depending
on the corresponding value of N(ω):

• If N = 4, there will be a solution of the algebraic system only if the determinant of the
associated 8×8 matrix Λ vanishes, i.e., F(ω)≡ det(Λ).

• If N > 4, one could still find solutions if the 8×8 subdeterminants of the non-square matrix
Λ vanish. So one can define F(ω)≡ ∑i |detλi|, where λi are the 8×8 submatrices of Λ.

• Finally, the important case is the following.

When N < 4, the algebraic system is underdetermined, and hence F(ω) ≡ 0, i.e., every
frequency ω for which N(ω) < 4 automatically corresponds to a QNM.

4. Results and discussion

As can be readily seen from fig. 2, there is a continuous region in the complex frequency-plane
where N(ω) = 3. According to the algorithm just described, every frequency in this region forms
part of the QNM spectrum. The appearance of such a region is independent of the concrete pa-
rameters (c,v,ξ ) used in the calculation, although obviously the precise shape and location of the
region might shift. So, in contrast to the absence of QNMs in 1+1 dimensions both in general
relativistic black holes and acoustic black holes in the hydrodynamic limit, in BEC black holes
in 1+1 dimensions with the full Bogoliubov dispersion relation, the QNM spectrum consists of a
continuous region in the complex frequency-plane.

It seems that the appearance of such a continuous region does not depend much on the con-
crete form of the modification of the dispersion relation. These modifications in their turn are
related in a quite general way to Lorentz invariance violations in high-energy physics [4]. The
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Figure 2: Plots illustrating the quasinormal mode spectrum for a one-dimensional black hole configuration
in BEC. The left-hand part of the picture represents the number N of constraints following from the boundary
condition that QNMs should be outgoing. The right-hand part shows the function log[F(ω)], where F(ω) =
0 corresponds to quasinormal modes. The QNM spectrum consists of the continuous region where N < 4.
[The numerical values used for these plots, in units such that the healing length ξ = 1, are c = 1;v = 0.7 in
the subsonic region and v = 1.8 in the supersonic region.]

essential condition for the existence of a continuous region in the QNM spectrum is the appear-
ance of superluminal modes, which is rather usual in condensed matter systems. Therefore, the
straightforward speculation mentioned in the abstract is simply that continuous regions might also
appear in the QNM spectrum of gravitational black holes in scenarios for gravity with high-energy
modifications of the dispersion relation.
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