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1. Introduction

κ-Minkowski space [1], [2] is a particular example of non-commutative space, in which posi-
tions x̂µ satisfy the algebra-like commutational relation between “time” and “space”1

[x̂0
, x̂i ] = ix̂i (1.1)

with all other commutators vanishing. Such space arouse first in the investigations ofκ-Poincare
algebra [1], [2]. Later it has been related to Doubly SpecialRelativity (see [3] for review and
references) and it has been claimed that it has a quantum gravitational origin [4], [5]. If this claims
are correct,κ-Minkowski space is to replace the standard Minkowski spacetime in description of
ultra high energy processes, in the limit when (quantum) gravitational effects could be regarded as
negligible.

Only recently however a theory of fields living on this space has started being analyzed in
depth [6], [7], [8], [9]. Thanks to the results reported in these papers we are now not only under-
standing quite well the structure ofκ-Minkowski space, and its relation to group theory, but also
we understand free scalar field theory on this space, including the way how to construct conserved
Noether charges associated with its symmetries.

In this paper we would like to describe this recent progress.Our goal is however not to repeat
results of our recent paper [9] but to explain what is its mainmessage. Thus we spend some time
discussing the structure ofκ-Minkowski space. Then we formulate scalar field theory on this space,
and after quoting results from this paper, we try to analyze their physical meaning.

2. Group theory and deformed Poincarè symmetry ofκ-Minkowski space

Before starting our investigations, let us first introduce the notion of co-product, which is going
to be crucial in what follows. Consider eq. (1.1). As it stands it looks Lorentz non-covariant. But
is it indeed? Lets see.

Assume that Lorentz generators, of rotationMi and boostNi act on positions in the standard
way, as follows

Mi . x̂0 = 0, Mi . x̂ j = iεi jk x̂k,

Ni . x̂0 = ix̂i , Ni . x̂ j = iδi j x̂0. (2.1)

This however does not say how the generators act on product ofposition. Usually one applies
Leibniz rule, for example

Ni . (x̂0 x̂ j) = (Ni . x̂0) x̂ j + x̂0(Ni . x̂ j)

and then the left hand side of (1.1) transforms differently than the right hand side. But Leibniz rule
is not sacred, it can be replaced by something more general. Let us try the following rule

Ni . (x̂0 x̂ j) = (Ni . x̂0) x̂ j + x̂0(Ni . x̂ j)+ i (Ni . x̂ j) = ix̂i x̂ j + ix̂0 x̂0δi j − x̂0δi j

Ni . (x̂ j x̂0) = (Ni . x̂ j) x̂0 + x̂ j (Ni . x̂0) = ix̂0 x̂0δi j + ix̂ j x̂i

1We set the deformation scaleκ = 1 in what follows.
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Subtracting and noticing that ˆxi x̂ j = x̂ j x̂i we find that the action of boost on commutator equals
−x̂0δi j which is exactlyiNi . x̂ j ! Thus we saved covariance of theκ-Minkowski defining relation,
eq. (1.1). The price we had to pay was the deviation from Leibniz rule. In the theory of Hopf
algebras such deviation is called coproduct, it says how to act with an algebra on a products of
representations. In more abstract terms one the coproduct is defined as mapping from an algebra
to tensor product of itM: A → A ⊗A ; we recover the standard Leibniz rule by taking trivial
co-product: M (A ) = 1⊗A + A ⊗ 1. The rule of action of Lorentz generators on product of
positions is a particular example of the nontrivial co-product structure ofκ-Poincarè algebra, being
the algebra of symmetries ofκ-Minkowski space

4(Mi) = Mi ⊗1+1⊗Mi, 4(Ni) = Ni ⊗1+e−k0 ⊗Ni + εi jkk j ⊗Mk (2.2)

Notice that the coproduct of rotations,Mi is trivial, and thus for them we have to do with the
standard Leibniz action. In the formula abovekµ are some generators of translation which satisfy

kµ . x̂ν = iδ ν
µ (2.3)

Using this and (2.2) one can easily reproduce the the formulas presented above and check that also
the commutator[x̂i , x̂ j ] = 0 transforms covariantly. The origin of formulas (2.2) is not completely
clear yet, but we will return to them in a moment.

Before doing so let us notice the important difference between the action of Lorentz generator
on positions defined in (2.1) and the commutator. Indeed the latter is defined to be (we consider
boosts only because for rotation, as a result of trivial coproduct the result is the same as in the
classical case)

[Ni, x̂0]. (?) ≡ Ni . [x̂0 . (?)]− x̂0 . [Ni . (?)]

where the position acts by multiplication. For example

[Ni, x̂0]. x̂ j = Ni . (x̂0x̂ j)− ix̂0x̂0δi j = ix̂i x̂ j − x̂0δi j = ix̂i . x̂ j + iNi . x̂ j

so that

[Ni , x̂0] = ix̂i + iNi

Similarly one can derive the form of the commutator[Ni , x̂ j ].
Let us now turn to our main theme, which is group theory. It is obvious that the defining

relation ofκ-Minkowski space (1.1) is a Lie algebra type one (contrary tothe so-called canonical
non-commutativity investigated in the context of string theory). It is surprising, a posteriori, that
serious investigations of the group structure associated with it have begun only recently.

To start consider the following 5×5 matrix representation of the generatorsxµ

x̂0 = −i







0 0 1
0 0 0
1 0 0






x̂ = i







0 εεε T 0
εεε 0 εεε
0 −εεε T 0






, (2.4)

whereεεε is a three dimensional vector with a single unit entry. Notice now thatx0 generates abelian
subalgebra while the generators corresponding to spacial positionsx are nilpotentx2 = 0. For

3



P
o
S
(
Q
G
-
P
h
)
0
2
3

Scalar field onκ-Minkowski space Jerzy Kowalski-Glikman

this reason mathematicians denote such algebraan(3), and the corresponding groupAN(3). Such
algebras and groups arise so-called Iwasawa decomposition. Following [9] we will use the name
Borel algebra and group.

A Borel group element can be written as

êk ≡ eiki x̂i
eik0x̂0

(2.5)

(If we interpretk as momentum this can be interpreted as a “plane wave onκ-Minkowski space”
[11].) The first natural question is what is the group manifold of Borel group. To answer it let us
consider the matrix representation of (2.5)

êk = KA
B =







P̄4 −Pe−k0 P0

−P 1 −P
P̄0 Pe−k0 P4






(2.6)

where(P0,P,P4) are given by2

P0(k0,k) = sinhk0 +
k2

2
ek0,

Pi(k0,k) = ki e
k0,

P4(k0,k) = coshk0−
k2

2
ek0. (2.7)

It is easy to check that they satisfy the conditions

−P2
0 +P2+P2

4 = 1, P0+P4 ≥ 0 (2.8)

Now if we act on a unit vector(0,0,0,0,1)T with the matrixKA
B we obtain points in 5d space with

coordinates (2.7), i.e., all points satisfying (2.8). But this is nothing but a half of de Sitter space,
see Fig. 1. Thus the momenta labeling of plane waves belong not to the flat space as usual, but to
(a submanifold of) curved de Sitter space. In the construction of field theory we will have to take
the curvature and global structure of the manifold (2.8) into account.

Let us investigate the structure of the Borel group in more details. Consider composition of
elements of the form (2.5).

êkl ≡ êkêl = eix̂i (ki+e−k0 li )eix̂0(k0+l0) (2.9)

The composition of group elements (“plane waves”) can be equivalently described in terms of a
non trivial Hopf algebra structure for the momentumk, the co-product. Sincek can be regarded as
a function on Borel group, one can associate with it the non commutative co-product dual to the
group multiplication, which turns out to be

∆(ki) = ki ⊗1+e−k0 ⊗ki , ∆(k0) = k0⊗1+1⊗k0 (2.10)

Similarly the conjugate of a plane wave

(êk)
† = e−ik0x̂0

e−iki x̂i
= e−i(̂ek0ki)x̂i

e−ik0x̂0
= êS(k) (2.11)

2P̄ are defined similarly, and the exact expressions can be foundin [9].
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Figure 1: The momentum space is the portion of De Sitter space above theplaneP+ = 0 whereP0 is the
vertical axis. The mass shell is given by the intersection ofthis portion of de Sitter space with the vertical
planesP4 =±cste. This mass shell naturally decomposes into three sectors indicated:+ with positive energy
andP4 > 0, − with negative energy andP4 > 0, and 0 with positive energy andP4 < 0. Notice that in the
limit κ → ∞ the second sector becomes unbounded, while the third sectordisappears.

gives the antipode

S(ki) = −ek0ki , S(k0) = −k0. (2.12)

which is another object known in the Hopf algebras theory. Wesee therefore that group theory
of Borel group is on one to one correspondence with the Hopf algebra structure of the space of
momenta.

At the beginning of this section we discussed Lorentz transformations of positions. Now we
can deduce how these transformations act on momenta. To thisend let us act with such transfor-
mation on a plane wave

Ni B êk = i

(

1
2

(

1−e−2k0

)

+
1
2

k 2
)

: x̂i êk : −iki : (kx̂+ x̂0) êk : (2.13)

Mi B êk = iε i jkk j : x̂kêk : (2.14)

where : f (x̂) : means ordered function with all ˆx0 shifted to the right.

By moving x̂µ out of the normal ordering (2.13) we can simplify the action of Lorentz trans-
formations which then read

Ni B êk = i (x̂iP0(k)− x̂0Pi(k))e−k0êk. (2.15)

Mi B êk = i
(

ε i jkPj(k)x̂k

)

e−k0êk (2.16)

Let us introduce the derivative operators on momentum spaceas follows

∇0 ≡ ∂
∂k0

−ki
∂

∂ki
, ∇0 ≡ ∂

∂ki
. (2.17)
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It can be checked that these derivatives implement the rightmultiplication on the group, that is

∇µ êk = ix̂µ êk

and the generators of Lorentz transformation can be written

Ni B êk = e−k0 (P0(k)∇i −Pi(k)∇0) êk, Mi B êk = e−k0

(

ε i jl Pj(k)∇l

)

êk (2.18)

One sees that the Lorentz transformations acting onk are deformed and non linear, indeed

[Mi,k j ] = i εi jkkk, [Mi,k0] = 0 (2.19)

[Ni,k j ] = i δi j

(

1
2

(

1−e−2k0

)

+
k2

2

)

− ikik j , [Ni,k0] = iki . (2.20)

which are just the defining relations ofκ-Poincaré algebra in the bicrossproduct basis [1]. However
it can be easily checked that it follows from (2.19), (2.20) that the variablesPµ in (2.7) transform
as components of Lorentz vector, whileP4 is a Lorentz scalar.

[Ni,Pj(k)] = iP0(k), [Ni,P0(k)] = iPi(k), [Ni ,P4(k)] = 0. (2.21)

In the field theory applications it is convenient therefore to label plane waves by these variables,
instead ofk.

The last technical point to be discussed here is the construction of differential calculus. To this
end we should construct the infinitesimal translationsdx̂µ , and investigate the algebra they have
with positions. It is a fundamental requirement that this algebra should be Lorentz covariant, so
let us start with the way the differentials transform under Lorentz transformations. One should
naturally require that for boosts

Ni .dx̂µ = d(Ni . x̂µ) (2.22)

and similarly for rotations. It follows from (2.1) that the differentials transform in exactly the same
way as positions. Now it is tempting to make use of the fact that we have already proved that the
algebra (1.1) is Lorentz covariant and take

[x̂0
,dx̂i ] = idx̂i

with all other commutators vanishing. This does not work however since it turns out that the
commutator[x̂i ,dx̂i ] = 0 is not covariant under boost. The way out of this puzzle is tointroduce
one more differentialdx̂4, invariant under all Lorentz transformations,Ni .dx̂4 = Mi .dx̂4 = 0 [12].
It turns out that the algebra of positions and differentialstakes the form

[x̂µ
,dx̂A] = (xµ)A

Bdx̂B
, A,B = 0, . . .4 (2.23)

where(xµ )A
B is the 5D matrix representation of positions (2.4). Obviously (2.23) is covariant,

which can be checked by direct calculation.
Knowing what the algebra of differentialsdx̂A is we can define the differential calculus by

taking
d f(x̂) = dx̂A ∂̂A f (x̂) (2.24)

6
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It can be checked by direct be tedious calculation that

∂̂A êk = PA(k) êk (2.25)

whereP(k) is given by (2.7).
Let us discuss consequences of eq. (2.25) more carefully. Notice first that the eigenvalues

of derivatives∂̂A can be decomposed intoPµ forming Lorentz vector andP4 being Lorentz scalar.
Thus, as in the standard case,∂̂ µ ∂̂µ is a Lorentz invariant wave operator, which can be made equal
−m2, as usual. Then it follows that the group element ˆek satisfies the standard field equation of
massive (or massless) scalar field, so that it deserves the name plane wave. In the next section
we will make use of this fact, defining the scalar field through(Fourier) decomposition into plane
waves.

It has been argued in the recent paper [13] that since∂̂0 does not vanish on time ( ˆx0) indepen-
dent functions, it is not a generator of time translation andP0 cannot be strictly speaking called
energy (cf. (2.7)). HoweverP0 has the virtue that it forms, together withPi, a Lorentz vector and
this simple Lorentz property is, in our view, a good argumentto choose it. Moreover one can devise
a notion of time for whichP0 is the translation generator.

What is true is the fact that the notion of time translation depends on the choice of differential
calculus. The question at hand is then which one leads to the most convenient notion of time and
time translation and correspondingly which notion of energy is the preferred one. The authors of
[6] seem to prefer quite arbitrarily the choice of time basedon a specific ordering of plane wave.
But this is an arbitrary choice. Suppose for instance that weorder the plane wave by putting the
time on the left we have the identity ˆek = eik0x̃0

eiki x̂i
where the new “time” is ˜x0 = x̂0 + ki x̂i . and

clearly a function independent of time ˆx0 is not independent of time ˜x0.
What we want to argue is that the choice of time and the corresponding energy should not be

based on an arbitrary choice but govern by the symmetries andthe dynamics of the theory under
study. As we have seen, the Lorentz symmetry favor the choiceof P0 as a time translation generator
but even more than that the dynamics also favor a choice of a covariant time translation. As we will
see the canonical generator of time translation is also given by the covariant time translation.

This concludes our brief discussion of technical background. We refer the reader interested in
more details to the paper [9]. Let us now turn to more physicalquestions concerning construction
of scalar field onκ-Minkowski space and its properties.

3. Field theory onκ-Minkowski space

Let us now now turn to construction of dynamical fields livingon κ-Minkowski space. Since
this space is non-commutative we must be careful about ordering. Given a ("time to the right
ordered" – which means that in all expressionsx0 is moved to the right) field̂φ =: φ(x̂) :3 we can
define the translation invariant integral to be

∫

R4
φ̂ ≡

∫

d4xφ(x). (3.1)

3The space of fields is the space of functions that can be expressed as Fourier transform, i.e. the basis of this space
is provided by plane waves ˆek.

7
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whereR
4 denotesκ-Minkowski, while the integral on the right hand side is taken over the standard

Minkowski space. This integral is the unique integral invariant under translation
∫

R4
k̂µ B φ̂ = 0. (3.2)

wherek̂µ B êk = kµ êk.
It should be noticed that this integral is not cyclic since
∫

R4
êkêp = δ (k0 + p0)δ 3(k +e−k0p) = e3k0δ (p0 +k0)δ 3(p+e−p0k) = e3k0

∫

R4
êpêk (3.3)

However it satisfy the exchange property
∫

R4
ê†

kêp =
∫

R4
ê†

pêk (3.4)

and this property extends to functions, which can be expressed as Fourier integrals. In the formula
above

ê†
k = êS(k), S(k0) = −k0, S(ki) = −ki e

k0 (3.5)

is the (deformed) conjugation.
Using this integral we can define the Fourier coefficients andthe inverse Fourier transform to

be
φ̃(k) =

∫

R4
êS(k)φ̂ , φ̂ =

∫

B
dµ(k) êkφ̃(k) (3.6)

whereB denotes the Borel group dµ(k) = e3k0

(2π)4 dk0d3k is the left invariant measure on it, dµ(pk) =

dµ(k).
The conjugation of plane waves extends directly to conjugation of fields, to wit

φ̂†(x̂) =

∫

dµ(k)φ̃∗(k) êS(k) (3.7)

where∗ denotes the standard complex conjugation.
We will be interested in a free massive scalar theory, given by the Lorentz invariant Lagrangian

L̂ =
1
2

[

(∂̂µ φ̂ )†∂̂ µ φ̂ +m2φ̂†φ̂
]

(3.8)

which leads to the equation of motion

∂̂µ ∂̂ µ φ̂ +m2φ̂ = 0 (3.9)

The action can be expressed in terms of Fourier modes as follows

S=

∫

R4
L̂ =

∫

dµ(k)φ̃∗(k)
(

PµPµ(k)+m2) φ̃(k) (3.10)

Collecting together all the conditions that the on-shell state should satisfy, we get the following
list

1. The de Sitter space condition, following form the fact that points of Borel group belong to
de Sitter spacePAPA = 1;

8
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2. The on shell condition following from (3.9)PµPµ +m2 = 0;

3. The Borel group condition, cf. (2.7), (2.8),P0 +P4 > 0.

All these three conditions can be imposed by inserting the appropriate delta and Heaviside
functions, as usual, see below. Let us now try to solve them algebraically. It follows from condition
1. and 2. thatP4 = ±

√
1+m2, and from condition 2. thatP0 = ±

√
P2 +m2 ≡ ±ωP. Imposing

condition 3. we see that we have to do with three sectors, denoted as+, −, and 0

sector+ : P0 = +ωP, P4 = +
√

1+m2

sector− : P0 = −ωP, P4 = +
√

1+m2, P2
< 1 (3.11)

sector 0 :P0 = +ωP, P4 = −
√

1+m2, P2
> 1

These sectors are depicted on Fig. 1. Note that contrary to the standard case the momentum
space is not simply connected, as it contains the trans-Planckian sector 04. Note also that as it
is easy to see from (3.11), the boundaries of sectors− and 0 are not Lorentz invariant. This can
be seen also from Fig. 1, where Lorentz orbits are cross-sections of the de Sitter surface and the
appropriate vertical planes; it follows that for sectors− and 0 these orbits necessarily cross the
surfaceP0+P4 = 0.

It should be stressed that when one takes as kinetic operator(∂̂4−1) instead of∂̂A∂̂ A, so that
the on shell condition becomesP4−1 = M2, as it is done in the papers [6], [10], [13], the sector 0
is missing, and the Lorentz invariance violation problem seems to be even more severe than in our
case, see below.

Decomposing the field̂φ into modes described by three sectors (3.11) we find

φ̂ =
∫

d3P
2ωP|P4|

a+(P)ê+
P +

∫

|P|<1

d3P
2ωP|P4|

a−(P)ê−P +
∫

|P|>1

d3P
2ωP|P4|

a0(P)ê0
P (3.12)

where
êε

P ≡ ê(P0(ε),P(ε),P4(ε)), ε = +,−,0

and
P0(+) = −P0(−) = P0(0) = ωP, Pi(+) = −Pi(−) = Pi(0) = Pi,

P4(+) = P4(−) = −P4(0) =
√

1+m2

Notice that the momentum space is now not simply connected (cf. fig. 1) and thus although the
last integral in (3.12) looks like the first (with restrictedintegration range) in fact we are integrating
over different parts of momentum manifold. It should be stressed again that had we chosen(∂̂4−1)

as kinetic operator, the last term in expansion (3.12) wouldbe missing.
Having the fieldφ̂ we can can compute the conjugate fieldφ̂†, by replacinga with a∗, and the

plane waves ˆeP with êS(P), whereS is the antipode defined by

S(P)i = − Pi

P4+P0
, S(P)0 = −P0+

P2

P0+P4
= −m2+P0P4

P0+P4
, S(P4) = P4.

4Recall that sinceκ = 1, in sector 0 momenta are larger than the scaleκ, which is usually identified with the
quantum gravity scale. For that reason we call these momentatrans-Planckian.
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It is important to note that the antipode exchanges the sectors + with − and maps 0 onto itself
and we denote bySε

P the antipode restricted to these sectors. Thus, in the quantum field theory
language, one could say that sectors+ and− describe particles and antiparticles, respectively,
while for sector 0 particles are their own antiparticles.

In order to explicitly write down the conjugate field we will need to change variablesP→ Sε
P.

Under this change of variable the measure transform as

d3Sε
P = d3Pdet(∂Pi (S

ε
P) j)) =

d3P
|P+(ε)|3

ωSε
P

ωP
(3.13)

with P+(ε) = P0(ε)+P4(ε). Thus the conjugate field is given by

φ̂† =
∫

d3P
2ωP|P4|

a∗+(P)ê−
S+

P
+

∫

|P|<1

d3P
2ωP|P4|

a∗−(P)ê+
S−P

+
∫

|P|>1

d3P
2ωP|P4|

a∗0(P)ê0
S0

P

=
∫

d3P
2ωP|P4|

a†
−(P)ê+

P +
∫

|P|<1

d3P
2ωP|P4|

a†
+(P)ê−P +

∫

|P|>1

d3P
2ωP|P4|

a†
0(P)ê0

P (3.14)

with

a†
−(P) ≡ a∗−(S+

P )

|P+(+)|3 , a†
+(P) ≡ a∗+(S−

P )

|P+(−)|3 , a†
0(P) ≡ a∗0(S

0
P)

|P+(0)|3 . (3.15)

One now sees explicitly that positively “charged” particles are conjugate to negatively “charged”
ones of bounded momentaP2 < 1, while the trans-Planckian particles of type 0 are self conjugate.

This concludes our discussion of on-shell fields. More details can be found in [9].

4. The Noether charges

Let us now turn to discussion of conserved charges associated with space-time symmetries of
the theory. It should be stressed that only these charges really deserve the name of momenta and
angular momenta, simply because they are conserved by construction. For this reason the Noether
charges are expected to be related to observable quantities.

To construct the Noether charges one should consider the variation of the Lagrangian in the
case when the variation of the field, denoted asδ φ̂ corresponds to a symmetry. In this case we
know that the variation of the Lagrangian is to be, on-shell,given by a total derivative. Thus we
must first decompose the variation of the Lagrangian into total derivative and a term proportional
to field equations. In the case of our Lagrangian (3.8) we have

δL̂ = ∂̂A
(

Π̂Aδ φ̂
)

+ek̂0

(

(∂̂µ ∂̂ µ φ̂ +m2φ̂ )†δ φ̂
)

+h.c (4.1)

with canonical momenta being defined as follows

−Π̂0 = Π̂0 ≡
(

e−k̂0∂̂0φ̂ +m2φ̂
)†

, (4.2)

Π̂i = Π̂i ≡
(

∂̂i(1−e−k̂0∂̂0)φ̂
)†

, (4.3)

Π̂4 = Π̂4 ≡
(

m2φ̂
)†

. (4.4)

10
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It is worth noticing that although the zero component of fieldmomentum (4.2) looks unusual, by
using the definition of conjugate derivatives

∂̂ †
i = −e−k̂0∂̂i , ∂̂ †

0 = −∂̂0 + ∂̂ 2e−k̂0, ∂̂ †
4 = ∂̂4,

(

ek̂0

)†
= e−k̂0 (4.5)

one can easily check that
Π̂0 = ∂̂4 ∂̂0φ̂† (4.6)

which means that on-shell it differs from the standard time derivative of the field just by a constant
multiplicative factor

√
1+m2 (because on-shell̂∂4 φ̂† = (∂̂4 φ̂)† =

√
1+m2 φ̂†).

Let us assume now thatδφ = dF φ , with dF being an appropriate differential, satisfying the
Leibniz rule5. Then we have

∂̂A
(

Π̂AdF φ̂
)

+ ∂̂ †
A

(

(dF φ̂)†Π̂†A
)

−dFL̂ = 0

In the first term the differential of̂φ is placed to the right of the canonical momentaΠ; and, of
course these two terms, do not commute, since in general the transformation parameters do not
commute with ˆx. This problem can be easily solved by noticing that the differential dF satisfies
Leibniz rule by definition, so that

∂̂A
(

dF(Π̂Aφ̂ )−dFΠ̂Aφ̂
)

+ ∂̂ †
A

(

(dF φ̂)†Π̂†A)

−dFL̂ = 0 (4.7)

In order to calculate the charge associated with translations we specifydF = dx̂A ∂̂A, use the
covariance propertŷ∂Adx̂B = 0 that has been proved in [9] and then disregarddx̂ to obtain the
(on-shell) conservation equation

∂̂A

(

∂̂B(Π̂Aφ̂ )− ∂̂BΠ̂Aφ̂
)

+ ∂̂ †
A

(

∂̂Bφ̂†Π̂†A
)

− ∂̂BL̂ = 0

or
− ∂̂A

(

∂̂BΠ̂Aφ̂
)

+ ∂̂ †
A

(

∂̂Bφ̂†Π̂†A
)

+ ∂̂B

(

∂̂A(Π̂Aφ̂ )− L̂

)

= 0 (4.8)

This equation can be reexpressed in the form

∂̂ATA
B = 0

where the components of the energy momentum tensor have the following form

T0
B = −∂̂BΠ̂0φ̂ − ∂̂Bφ̂†Π0† (4.9)

T i
B = −∂̂BΠ̂i φ̂ −e−k0(∂̂Bφ̂†Πi†)+e−k0∂̂ i(∂̂Bφ̂†Π0†) (4.10)

T4
B = −∂̂BΠ̂4φ̂ + ∂̂Bφ̂†Π4† = 0 (4.11)

where in the last equation we use the explicit expression ofΠ4. Because of the last equality above,
we just have the 4-dimensional conservation equations

∂̂µTµ
B = 0 (4.12)

5In the case of translationsdF = dx̂A ∂̂A, (A = 0, . . . ,4 since we are using the covariant differential calculus for
translations, which happens to be five–dimensional, see [9]for details and references); for Lorentz transformations
dF = ωαβ Lαβ , with Lαβ appropriate differential generators of these transformations, satisfying the standard algebra.
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in spite of the fact that the calculus we were using was five-dimensional. It can be shown that this
property holds also in the case of interacting (and not just free) fields.

Now it is pretty straightforward, although quite tedious, to find the explicit form of conserved
charges for translations. They are given by the formula

PB =

∫

R3
T0

B = −
∫

R3
(∂̂BΠ̂0φ̂ + ∂̂Bφ̂†Π̂†0).

and read

P0 =

∫

ε

d3P
2ωP|P4|

(N+(P)+N−(P)−N0(P))ωP (4.13)

P4 = −
∫

ε

d3P
2ωP

(N+(P)−N−(P)+N0(P)) (4.14)

Pi =
∫

ε

d3P
2ωP|P4|

(N+(P)−N−(P)+N0(P))Pi (4.15)

whereN’s are constructed from Fourier coefficients so that they corresponds to particle number
operators in quantum theory. Explicitly

Nε(P) = a†
−ε(P)a−ε(S

ε
P).

Let us pause here to discuss the meaning of these equations. First of all since for each mode
we have the energyωP ≡

√
m2+P2 and the momentumP, we see that (in the quantum field theory

language) for a single particle state the standard dispersion relationP2
0 −P2 = m2 holds. Thus, in

agreement with earlier analyzes (for discussion see [3] andreferences therein) there is no deforma-
tion of dispersion relation and, in particular no energy dependence of the speed of light. In fact in
the present formulation most of the traces of deformation will be detectable only at the interacting
theory level (e.g. modification of the conservation law in the vertex.)

Second it seems that we are having a problem since the particle of type 0 have negative energy.
However the number of particle of type 0 (again using the quantum field theory terminology)
is also conserved because it can be expressed as a combination of conserved charges−2N0 =√

1+m2Q+P4 where

Q = −
∫

(Π0φ̂ − φ̂†Π0†) =

∫

d3P
2ωP|P4|

(N+(P)−N−(P)−N0(P))

is theU(1) charge. Therefore in spite of the negative energy of sector 0modes no instability can
occur.

The charges associated with Lorentz transformations can becalculated in a similar way. The
rotational charges have the standard form

Mi j =
1
i ∑

ε

∫

ε

d3P
2ωP|P4|

α(ε)|P+(ε)|3P[ j(ε)

(

∂
∂Pi]

a†
−ε(P)

)

a†∗
−ε(P) (4.16)

where, α(+) = +1, α(−) = −1, α(0) = −1.
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In the case of charges associated with Lorentz symmetry the situation is more complex, since
in addition to the standard bulk term

N
bulk

i = −1
i ∑

ε

∫

ε

d3P
2ωP|P4|

α(ε)P+(ε)

[

Pi(ε)

P0(ε)
NP(ε)+ ωP |P+(ε)|3

(

∂
∂Pi

a†
−ε(P)

)

a†∗
−ε(P)

]

(4.17)
they acquire boundary terms, corresponding to the boundaryof sectors− and 0 discussed earlier,
to wit

N
boundary

i =
1
i

∫

|P|=1

dΩ
2|P4|

Pi (N−(P)−N0(P)) (4.18)

wheredΩ is the measure on the (momentum) unit sphere.
Note that while the contribution of+ sector to the boost charge is standard, it contains the

nonstandard boundary term for both− and 0 sectors. These contributions would cancel if we glue
together the boundary of the− and 0 sectors, i.e., if we assume that the particle disappearing from
sector−, as a result of applying boost (we must apply a finite boost notan infinitesimal one to
achieve this) reappears in sector 0, and vice versa.

One sees that by gluing boundaries of sectors− and 0 in momentum space it is possible to
save Lorentz symmetry. It should be stressed that such procedure is simply impossible in the
models of scalar field theory onκ-Minkowski space considered in the series of papers by Amelino-
Camelia et. al. [6], [10], [13], because in the case of the model considered there the sector 0 is
missing whatsoever, and the Lorentz symmetry is hopelesslylost6. This fact indicates that the
model considered in these papers is not very interesting, aslong as we have no reason to believe
that in nature we have to do with an explicit breaking o Lorentz symmetry at Planck scale (for
example exhibiting itself in the form of disappearance of antiparticles boosted to Planck energy.)

5. Conclusions

In this contributions we presented some themes described inour recent paper [9]. Let us
conclude with presenting a couple of the most important questions that are still left unanswered.

1. The issue of Lorentz symmetry. Infinitesimally the theoryis perfectly Lorentz symmetric:
it cannot see the boundaries of the region in momentum space.However this symmetry is
at least endangered in the case of finite boosts. It is extremely interesting to investigate this
problem further. What happens to the particles that disappear? If they really do what about
energy/momentum conservation? If the effect of sector−/sector 0 transmutation is real, what
would be its observable signatures?

2. The interacting fields. The construction presented here and in [9] should in principle hold in
the case of interacting theories as well. However as a resultof the fact that the integral over
κ-Minkowski space is not cyclic it is not completely clear if an interacting theory,φ3 or φ4

say, possesses all the symmetries of the free one, considered here.

6Of course identifying the generators of a symmetry is a mathematical statement and does not guarantee that the
corresponding operationally defined quantities can be constructed. However, vice versa, if even the mathematically
speaking the symmetry is missing there is no hope to construct its operational counterpart. Notice also that the effect
of breaking Lorentz symmetry in sector− has been already noticed in the one of the first papers on Doubly Special
Relativity [14].
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