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1. Introduction

k-Minkowski space [1], [2] is a particular example of non-aomitative space, in which posi-
tions X satisfy the algebra-like commutational relation betwemé” and “space®

R0 %] =ig (1.1)

with all other commutators vanishing. Such space arouderithe investigations ok-Poincare
algebra [1], [2]. Later it has been related to Doubly SpeBalativity (see [3] for review and
references) and it has been claimed that it has a quanturitagi@val origin [4], [5]. If this claims
are correctx-Minkowski space is to replace the standard Minkowski spamein description of
ultra high energy processes, in the limit when (quantunmyigronal effects could be regarded as
negligible.

Only recently however a theory of fields living on this spaees Istarted being analyzed in
depth [6], [7], [8], [9]. Thanks to the results reported ir$le papers we are now not only under-
standing quite well the structure @tMinkowski space, and its relation to group theory, but also
we understand free scalar field theory on this space, inajuitie way how to construct conserved
Noether charges associated with its symmetries.

In this paper we would like to describe this recent progr€ss. goal is however not to repeat
results of our recent paper [9] but to explain what is its nmagssage. Thus we spend some time
discussing the structure gfMinkowski space. Then we formulate scalar field theory anspace,
and after quoting results from this paper, we try to analyeér physical meaning.

2. Group theory and deformed Poincaré symmetry ofk-Minkowski space

Before starting our investigations, let us first introduwne motion of co-product, which is going
to be crucial in what follows. Consider eq. (1.1). As it statitdooks Lorentz non-covariant. But
is it indeed? Lets see.

Assume that Lorentz generators, of rotatddnand boostN; act on positions in the standard
way, as follows

Mi>Xo =0, Mi>Xj =i&jkR,

Ni>Xo =i%, Ni>Xj=idjXo. (2.1)

This however does not say how the generators act on prodymbsifion. Usually one applies
Leibniz rule, for example

Ni> (X0Xj) = (Ni>%o) Xj 4 %o (Ni >X;)
and then the left hand side of (1.1) transforms differerthntthe right hand side. But Leibniz rule
is not sacred, it can be replaced by something more genesilid try the following rule

Ni> (R0%j) = (Ni>Ro) X +Ro (Ni> %)) +i (Ni>Rj) = i%Xj + i%0%08j — R3]

Nil>()2j Xo) = (Nib)’zj))zO‘F)zj (Ni>Xo) = i)?o)?o&j +i)zj)2i

I\We set the deformation scate= 1 in what follows.
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Subtracting and noticing thatXj = X; X we find that the action of boost on commutator equals
—Xo4;j which is exactlyiN; >X;! Thus we saved covariance of thkeMinkowski defining relation,
eg. (1.1). The price we had to pay was the deviation from Lizibme. In the theory of Hopf
algebras such deviation is called coproduct, it says howctavith an algebra on a products of
representations. In more abstract terms one the coprosldeffined as mapping from an algebra
to tensor product of in: & — o ® o7; we recover the standard Leibniz rule by taking trivial
co-product: A (&) = 1® &/ + .o/ ®1. The rule of action of Lorentz generators on product of
positions is a particular example of the nontrivial co-proidstructure ok-Poincaré algebra, being
the algebra of symmetries efMinkowski space

A(Mi) =Mi®l+1x M, A(Ni) = Ni®1—|—eiko®Ni —I—Eijkkj ® My (2.2)

Notice that the coproduct of rotation; is trivial, and thus for them we have to do with the
standard Leibniz action. In the formula abdygare some generators of translation which satisfy

k>R =i8) (2.3)

Using this and (2.2) one can easily reproduce the the forsmrasented above and check that also
the commutatoff , %] = 0 transforms covariantly. The origin of formulas (2.2) ig nompletely
clear yet, but we will return to them in a moment.

Before doing so let us notice the important difference betwihe action of Lorentz generator
on positions defined in (2.1) and the commutator. Indeedatterlis defined to be (we consider
boosts only because for rotation, as a result of trivial odpct the result is the same as in the
classical case)

[N %o > (%) = Ny > [R> (%)] — Sot> [Ny & ()]

where the position acts by multiplication. For example
[Ni, %o] >Xj = N; D()A(o)A(j) —iXX0dj = i% Xj — XoGj = i% > X +iNj>X;

so that
[Ni,%o] = i% +iNj
Similarly one can derive the form of the commutafid, X;].

Let us now turn to our main theme, which is group theory. Itlsious that the defining
relation ofk-Minkowski space (1.1) is a Lie algebra type one (contrarthtoso-called canonical
non-commutativity investigated in the context of stringdty). It is surprising, a posteriori, that
serious investigations of the group structure associatddithave begun only recently.

To start consider the following 5 5 matrix representation of the generatgi's

001 0T 0
L=—i|looo| x=ile 0 &], (2.4)
100 0-€T0

whereg is a three dimensional vector with a single unit entry. Netiow that® generates abelian
subalgebra while the generators corresponding to spacsfignsx are nilpotentx®> = 0. For
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this reason mathematicians denote such algeifd), and the corresponding gro@®t(3). Such
algebras and groups arise so-called lwasawa decomposkmltowing [9] we will use the name
Borel algebra and group.

A Borel group element can be written as

& = e gkot® (2.5)

(If we interpretk as momentum this can be interpreted as a “plane wave-Blinkowski space”
[11].) The first natural question is what is the group mauifof Borel group. To answer it let us
consider the matrix representation of (2.5)

P, —Pe Ry
&=KB=|-P 1 -—pP (2.6)
Po Pelo Py

where(Py, P, P4) are given by

Po(ko,Kk) = sinhkg + k; o,
P(ko,k) = ki €°,
Ps(ko, k) = coshkg— k;eko (2.7)
It is easy to check that they satisfy the conditions
~Pi+P?+Pi=1 PR+P>0 (2.8)

Now if we act on a unit vectof0,0,0,0,1)T with the matrixk,® we obtain points in 8 space with
coordinates (2.7), i.e., all points satisfying (2.8). Bustis nothing but a half of de Sitter space,
see Fig. 1. Thus the momenta labeling of plane waves belonhgrbe flat space as usual, but to
(a submanifold of) curved de Sitter space. In the constroaif field theory we will have to take
the curvature and global structure of the manifold (2.8) extcount.

Let us investigate the structure of the Borel group in moitaile Consider composition of
elements of the form (2.5).

&g = 8.8 = &F (ke 0l) g (koto) (2.9)

The composition of group elements (“plane waves”) can bevatgntly described in terms of a
non trivial Hopf algebra structure for the momentinihe co-product. Sinckecan be regarded as
a function on Borel group, one can associate with it the nonmatative co-product dual to the
group multiplication, which turns out to be

Ak)=k@l+e ek, Ak)=kel+lok (2.10)
Similarly the conjugate of a plane wave

&)t = o ko gikiX _ oi{g0k)R ko _ &5 (2.11)

2p are defined similarly, and the exact expressions can be fioL{i.
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Sector +

Figure 1. The momentum space is the portion of De Sitter space abovaldheP, = 0 whereP, is the
vertical axis. The mass shell is given by the intersectiothisf portion of de Sitter space with the vertical
planes?, = tcste This mass shell naturally decomposes into three secticaited:+ with positive energy
andP; > 0, — with negative energy ang, > 0, and 0 with positive energy arigd < 0. Notice that in the
limit Kk — o the second sector becomes unbounded, while the third stistppears.

gives the antipode

Sk) = —€°;, S(ko) = —ko. (2.12)

which is another object known in the Hopf algebras theory. 3a&fe therefore that group theory
of Borel group is on one to one correspondence with the Hapdlah structure of the space of
momenta.

At the beginning of this section we discussed Lorentz tramsations of positions. Now we
can deduce how these transformations act on momenta. Terttitet us act with such transfor-
mation on a plane wave

(1 1 A . A A a
N> & =i <§ (1—e‘2k°) +§k2> %8 —iki o (KR +%o) & : (2.13)
Mi > & = igk; : Kb : (2.14)

where :f(X) : means ordered function with a4 Shifted to the right.
By movingx* out of the normal ordering (2.13) we can simplify the actidrLorentz trans-
formations which then read

N > & = i (ZiPo(k) — %R (k) & 4. (2.15)
Mi > & = i (s”kPj(k)f(k> elog, (2.16)

Let us introduce the derivative operators on momentum sasdéellows

o_ 90 _

0 o 0
=3¢ g O

s =3 (2.17)
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It can be checked that these derivatives implement the niglitiplication on the group, that is
OHG = ixHé
and the generators of Lorentz transformation can be written
N> & =6 (RO —RKT)& M>&=e"(s"Rk0)a&  (218)
One sees that the Lorentz transformations acting are deformed and non linear, indeed

[Mi,kj] =igijke, [Mi,ko]=0 (2.19)

N k(] = i3 <% (1—e*2"0) +k;> —ikikj, [Niko] = iki. (2.20)

which are just the defining relations wfPoincaré algebra in the bicrossproduct basis [1]. However
it can be easily checked that it follows from (2.19), (2.2@ttthe variable®, in (2.7) transform
as components of Lorentz vector, whitgis a Lorentz scalar.

[Ni, Py (K)] = iPo(k),  [Ni,Ro(K)] =iRi(K), [Ni,Ps(k)] = 0. (2.21)

In the field theory applications it is convenient therefardabel plane waves by these variables,
instead ok.

The last technical point to be discussed here is the cotisinuaf differential calculus. To this
end we should construct the infinitesimal translatid®¥, and investigate the algebra they have
with positions. It is a fundamental requirement that thggera should be Lorentz covariant, so
let us start with the way the differentials transform underdntz transformations. One should
naturally require that for boosts

Ni>dsH = d (N, >xH) (2.22)

and similarly for rotations. It follows from (2.1) that théférentials transform in exactly the same
way as positions. Now it is tempting to make use of the fadt Wethave already proved that the
algebra (1.1) is Lorentz covariant and take

[, dR] = id&

with all other commutators vanishing. This does not work &egv since it turns out that the
commutator[%,d%'] = 0 is not covariant under boost. The way out of this puzzle imtimduce
one more differentiati®®, invariant under all Lorentz transformatiomd>dg* = M;>dg* = 0 [12].

It turns out that the algebra of positions and differentialses the form

(%M df) = (x*)Agd%B, AB=0,...4 (2.23)

where (x#)Ag is the 5D matrix representation of positions (2.4). Obvipy8.23) is covariant,
which can be checked by direct calculation.
Knowing what the algebra of differentiat$?* is we can define the differential calculus by
taking
df(R) = d®daf (%) (2.24)
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It can be checked by direct be tedious calculation that

Oné = Pa(k) & (2.25)

whereP(K) is given by (2.7).

Let us discuss consequences of eq. (2.25) more carefullyicaNfirst that the eigenvalues
of derivativesf?A can be decomposed inRy forming Lorentz vector ané, being Lorentz scalar.
Thus, as in the standard ca@é‘,ép is a Lorentz invariant wave operator, which can be made equal
—m?, as usual. Then it follows that the group elemepsatisfies the standard field equation of
massive (or massless) scalar field, so that it deserves the piane wave. In the next section
we will make use of this fact, defining the scalar field thro@gburier) decomposition into plane
waves.

It has been argued in the recent paper [13] that sE?@c:k)es not vanish on timed)'indepen-
dent functions, it is not a generator of time translation Badannot be strictly speaking called
energy (cf. (2.7)). Howevedry has the virtue that it forms, together wikh a Lorentz vector and
this simple Lorentz property is, in our view, a good argunterthoose it. Moreover one can devise
a notion of time for whicH, is the translation generator.

What is true is the fact that the notion of time translatiopetels on the choice of differential
calculus. The question at hand is then which one leads to & convenient notion of time and
time translation and correspondingly which notion of egaggthe preferred one. The authors of
[6] seem to prefer quite arbitrarily the choice of time basada specific ordering of plane wave.
But this is an arbitrary choice. Suppose for instance thabkder the plane wave by putting the
time on the left we have the identity, = &%’ &k® where the new “time” is®= % + k. and
clearly a function independent of timx i$ not independent of time”

What we want to argue is that the choice of time and the cooretipg energy should not be
based on an arbitrary choice but govern by the symmetriestendynamics of the theory under
study. As we have seen, the Lorentz symmetry favor the cludiBgas a time translation generator
but even more than that the dynamics also favor a choice ofaxiemt time translation. As we will
see the canonical generator of time translation is alsandiyethe covariant time translation.

This concludes our brief discussion of technical backgdowe refer the reader interested in
more details to the paper [9]. Let us now turn to more physjcaistions concerning construction
of scalar field ork-Minkowski space and its properties.

3. Field theory on k-Minkowski space

Let us now now turn to construction of dynamical fields livioig k -Minkowski space. Since
this space is non-commutative we must be careful about ioglerGiven a ("time to the right
ordered" — which means that in all expressiefigs moved to the right) fieldp =: ¢(X) :3 we can
define the translation invariant integral to be

/R4qbz /d4X(p(x). (3.1)

3The space of fields is the space of functions that can be esquiess Fourier transform, i.e. the basis of this space
is provided by plane waves.”
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whereR* denotes<-Minkowski, while the integral on the right hand side is takever the standard
Minkowski space. This integral is the unique integral inaat under translation

/RARW@ZO. (3.2)

whereky > & = ky &
It should be noticed that this integral is not cyclic since

|88 = Slko-+ po)3(k +-ep) = *8(po )0 (p+e k) = €* [ &6 (33)

However it satisfy the exchange property

/R‘1 &= /R i (3.4)

and this property extends to functions, which can be expteas Fourier integrals. In the formula
above

& =65y, Sko)=—ko, Sk)=-ke® (3.5)

is the (deformed) conjugation.
Using this integral we can define the Fourier coefficientsthrdnverse Fourier transform to
be

o= [ Eswd. o= [ dulad (3.6)

o
2

whereB denotes the Borel grougudk) = dkodk is the left invariant measure on itudpk) =

du(k).
The conjugation of plane waves extends directly to conjogatf fields, to wit

9% = [ 9@ (k)& @37)

wherex denotes the standard complex conjugation.
We will be interested in a free massive scalar theory, giwetiné Lorentz invariant Lagrangian
1

2 =3 |(0.9)10" 5+ P91 | (3.8)

which leads to the equation of motion
00" P+ 1mPQ=0 (3.9)
The action can be expressed in terms of Fourier modes agvfollo
S— /Rf?: /du(k)(ﬁ*(k) (PP, (K) + ) @(K) (3.10)

Collecting together all the conditions that the on-shaltesshould satisfy, we get the following
list

1. The de Sitter space condition, following form the factt thaints of Borel group belong to
de Sitter spacsP” = 1;
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2. The on shell condition following from (3.9),P* + mé = 0;

3. The Borel group condition, cf. (2.7), (2.8 + P4 > 0.

All these three conditions can be imposed by inserting therapiate delta and Heaviside
functions, as usual, see below. Let us now try to solve thegebahically. It follows from condition
1. and 2. thaP; = £vV/1+n?, and from condition 2. thaPy = +v/P2+n? = £wp. Imposing
condition 3. we see that we have to do with three sectors,tddras+-, —, and 0

sector+ : Pp=+wp, Py=+V1+nP
sector— : Bp=—wp, Pi=+v1+m?, P?><1 (3.11)
sector 0 :Pp=+awp, Pi=—v1+m2, P>>1

These sectors are depicted on Fig. 1. Note that contraryetstdndard case the momentum
space is not simply connected, as it contains the transzKikam sector . Note also that as it
is easy to see from (3.11), the boundaries of sectoend O are not Lorentz invariant. This can
be seen also from Fig. 1, where Lorentz orbits are crossesscof the de Sitter surface and the
appropriate vertical planes; it follows that for sectersand O these orbits necessarily cross the
surfacePy+ P, = 0.

It should be stressed that when one takes as kinetic opegfiatefl) instead ofdad”, so that
the on shell condition becom& — 1 = M2, as it is done in the papers [6], [10], [13], the sector O
is missing, and the Lorentz invariance violation problemnss to be even more severe than in our
case, see below.

Decomposing the fielgh into modes described by three sectors (3.11) we find

- d3p A+ d3p o d3p 0
0= | s PE [ i PE [ amePE @12
where
& = &Ry(e)Pe)Pu(e)) €= T =0
and

Po(+) = —Po(—) =P(0) =wp, R(+)=—-R(—)=PR(0)=R,
Pa(+) =Pa(—) = —P4(0) = Vi1t

Notice that the momentum space is now not simply connectiedigc 1) and thus although the
last integral in (3.12) looks like the first (with restrictedegration range) in fact we are integrating
over different parts of momentum manifold. It should besgesl again that had we choié@— 1)
as kinetic operator, the last term in expansion (3.12) wbeldhissing.

Having the field@ we can can compute the conjugate fiél‘d by replacinga with a*, and the
plane wavegp with gp), whereSis the antipode defined by

R P2 e+ PPy
P)i = — , S(P)o=—Po+ =—
P P+ Po SP)o *T R+ Py Po+ P4

4Recall that sincex = 1, in sector 0 momenta are larger than the seglevhich is usually identified with the
quantum gravity scale. For that reason we call these montiemts-Planckian.

., S(Py) =Py
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It is important to note that the antipode exchanges the megtavith — and maps 0 onto itself
and we denote b the antipode restricted to these sectors. Thus, in the guafield theory
language, one could say that sectarsand — describe particles and antiparticles, respectively,
while for sector 0O particles are their own antiparticles.

In order to explicitly write down the conjugate field we wiked to change variabl&s— Sf.
Under this change of variable the measure transform as

3 :
S = FPAe(dR(S9)) = g (313)

with P, (€) = Py(€) + P4(€). Thus the conjugate field is given by

P P +/ P mer [ TP apye
20p P %8 T Jca 2ap Pl %S T s 20 R 00

FP ot pre ®p d°p .
= +/ —a, (P ‘+/ 3.14
/Zap]P4\ P|<1 2ep|Py| +(P)& IP>1 2043“:’4! %(P)ER (3.14)

i =

with

tooy L &S5 b o @(Sp) _ aé(%)

One now sees explicitly that positively “charged” partickre conjugate to negatively “charged”
ones of bounded momeni® < 1, while the trans-Planckian particles of type 0 are seljugate.
This concludes our discussion of on-shell fields. More tietain be found in [9].

4. The Noether charges

Let us now turn to discussion of conserved charges assdaite space-time symmetries of
the theory. It should be stressed that only these chargég deserve the name of momenta and
angular momenta, simply because they are conserved byrediish. For this reason the Noether
charges are expected to be related to observable quantities

To construct the Noether charges one should consider tletigar of the Lagrangian in the
case when the variation of the field, denoteddgscorresponds to a symmetry. In this case we
know that the variation of the Lagrangian is to be, on-shgllen by a total derivative. Thus we
must first decompose the variation of the Lagrangian intal wérivative and a term proportional
to field equations. In the case of our Lagrangian (3.8) we have

8.2 = 0 (M1P5) + o ((éuéﬂm mzcb)Taci)) +he (4.1)

with canonical momenta being defined as follows

A=, = (e‘r‘oéoc?)erZA)T, (4.2)
A=A = (Al(l—e_r‘OAo) A>T’ (4.3)
A4=0, = (). (4.4)
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It is worth noticing that although the zero component of figldmentum (4.2) looks unusual, by
using the definition of conjugate derivatives

~ ~ - oA ~ t
dT = —e_koah ag = —(90+02e_k0702 = (947 <ek0) = e_ko (45)

one can easily check that
Mo = 040" (4.6)

which means that on-shell it differs from the standard tireewative of the field just by a constant
multiplicative factory/1+ m2 (because on-shefly o' = (3, 9)" = v1+n2 o).

Let us assume now thadp = dr ¢, with dr being an appropriate differential, satisfying the
Leibniz rule. Then we have

éA (ﬁAdF (b) —1—3; ((dF (b)TﬁTA) — dpj =0

In the first term the differential 0(5 is placed to the right of the canonical momentaand, of
course these two terms, do not commute, since in generatghsférmation parameters do not
commute withx” This problem can be easily solved by noticing that the dhfiéial d- satisfies
Leibniz rule by definition, so that

On (0 ((129) — de129) + ) ((dr @) TA™) —de.2 =0 (4.7)

In order to calculate the charge associated with transiative specifydz = dg* éA, use the
covariance propertyad<® = 0 that has been proved in [9] and then disregakdo obtain the
(on-shell) conservation equation

a/_\ (aB(ﬁAQB) — (A9|3|:|A(27> + 3g (%q@*ﬁ*’*) — (A?Bj =0
or
—0a <0BﬁA¢> + dAT <0B(pTI:ITA> + dg (dA(ﬁA(p) — f) =0 (4.8)
This equation can be reexpressed in the form
OaTA=0

where the components of the energy momentum tensor havelkbwihg form

T% = —3gM°p— dg'N°" (4.9)
Tlg = —dsM'@—e (g N + e s (d0'N°T) (4.10)
T4 = —dgM*@+ds@'N* =0 (4.11)

where in the last equation we use the explicit expressidi‘oBecause of the last equality above,
we just have the 4-dimensional conservation equations

o,TH =0 (4.12)

5In the case of translatiordg = dkAéA, (A=0,...,4 since we are using the covariant differential calculus for

translations, which happens to be five—dimensional, seéo[9letails and references); for Lorentz transformations
de = P Lag. With L, appropriate differential generators of these transfoionat satisfying the standard algebra.

11
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in spite of the fact that the calculus we were using was fiveedisional. It can be shown that this
property holds also in the case of interacting (and not pest)ffields.

Now it is pretty straightforward, although quite tediousfihd the explicit form of conserved
charges for translations. They are given by the formula

%—/ TP _—/ (3sM°@+ d'1110).

and read
o= [=FP (N (P) N (P)— No(P 4.13
0= sm(+()+ —(P) —No(P)) wp (4.13)
d3
Dy — 2(; (N (P) = N_(P) + No(P)) (4.14)
. d3p

whereN'’s are constructed from Fourier coefficients so that theyesponds to particle number
operators in quantum theory. Explicitly

Let us pause here to discuss the meaning of these equatiosisoffall since for each mode
we have the energgp = v/n? + P2 and the momenturR, we see that (in the quantum field theory
language) for a single particle state the standard digpersiationP? — P?> = n? holds. Thus, in
agreement with earlier analyzes (for discussion see [3}efiedences therein) there is no deforma-
tion of dispersion relation and, in particular no energyeatajence of the speed of light. In fact in
the present formulation most of the traces of deformatidhheidetectable only at the interacting
theory level (e.g. modification of the conservation law ia t#ertex.)

Second it seems that we are having a problem since the pasfitfpe 0 have negative energy.
However the number of particle of type 0 (again using the twranfield theory terminology)
is also conserved because it can be expressed as a coniohttonserved charges2. 45 =
V1+ M2+ 2, where

d3p
200p|Py|

2= [(M°p-¢'n%) = (N (P) ~N-(P) ~ No(P)

is theU (1) charge. Therefore in spite of the negative energy of sectoo@es no instability can

OocCcCur.

The charges associated with Lorentz transformations caraloalated in a similar way. The
rotational charges have the standard form

d*pP P *
z/Zapthl +(£)|3P“(5)<ap.] Te('°)> a”,(P) (4.16)

where, a(+)=+1, a(—-)=-1, a(0)=-1
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In the case of charges associated with Lorentz symmetnyittegtisn is more complex, since
in addition to the standard bulk term

3
pcbulk Z/ 2(1"734‘ £)P, (€) [% Np(€) + wp |Py(g)? (a% aTE(P)> aT*E(P)]
(4.17)

they acquire boundary terms, corresponding to the bounafesgctors— and O discussed earlier,
to wit

boundar 17 dQ
N y— =z /Pl 12|F>4|P(N (P) —No(P)) (4.18)

wheredQ is the measure on the (momentum) unit sphere.

Note that while the contribution of sector to the boost charge is standard, it contains the
nonstandard boundary term for bethand 0 sectors. These contributions would cancel if we glue
together the boundary of the and 0 sectors, i.e., if we assume that the particle disajpgefiom
sector—, as a result of applying boost (we must apply a finite boostamoinfinitesimal one to
achieve this) reappears in sector 0, and vice versa.

One sees that by gluing boundaries of secterand 0 in momentum space it is possible to
save Lorentz symmetry. It should be stressed that such guoeds simply impossible in the
models of scalar field theory an-Minkowski space considered in the series of papers by Ameli
Camelia et. al. [6], [10], [13], because in the case of the @hadnsidered there the sector 0 is
missing whatsoever, and the Lorentz symmetry is hopeldest§. This fact indicates that the
model considered in these papers is not very interestintpnasas we have no reason to believe
that in nature we have to do with an explicit breaking o Laxesymmetry at Planck scale (for
example exhibiting itself in the form of disappearance difatticles boosted to Planck energy.)

5. Conclusions

In this contributions we presented some themes describedirimecent paper [9]. Let us
conclude with presenting a couple of the most important tipress that are still left unanswered.

1. The issue of Lorentz symmetry. Infinitesimally the themrperfectly Lorentz symmetric:
it cannot see the boundaries of the region in momentum spgdoeever this symmetry is
at least endangered in the case of finite boosts. It is extyeimteresting to investigate this
problem further. What happens to the particles that disaé# they really do what about
energy/momentum conservation? If the effect of seetisector 0 transmutation is real, what
would be its observable signatures?

2. The interacting fields. The construction presented hadara[9] should in principle hold in
the case of interacting theories as well. However as a restlie fact that the integral over
k-Minkowski space is not cyclic it is not completely clear if Bteracting theoryg? or ¢*
say, possesses all the symmetries of the free one, corgidere.

60f course identifying the generators of a symmetry is a nrattieal statement and does not guarantee that the
corresponding operationally defined quantities can betoorted. However, vice versa, if even the mathematically
speaking the symmetry is missing there is no hope to cortsteuoperational counterpart. Notice also that the effect
of breaking Lorentz symmetry in secter has been already noticed in the one of the first papers on RP@&ecial
Relativity [14].
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