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of space as quantum subsystems. After recalling how to divide a generic quantum system into
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localization schemes. The first scheme is the standard one, induced by the local relativistic fields;

the alternative scheme that we consider is the one induced bythe Newton-Wigner operators.

If degrees of freedom are divided according to the latter, the Hamiltonian of the field exhibits
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according to the Newton-Wigner scheme, the geometric entropy is finite and exhibits a sensible

thermodynamic behaviour.
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1. Subsystems and Local Subsystems

Among other famously intriguing and counterintuitive aspects of quantum physics, relatively
little attention has been paid to the quantum mechanical description of a composite system. The
partitions of a quantum system – i.e. all possible ways that aquantum system can be divided into
“parts” – have a mathematical structure completely different from, for example, the partitions of a
set in set theory. In set theory you can choose a bi-partitionA-B by going through each element of
a (countable) set and deciding whether it belongs to subset Aor B. Clearly, finite sets admit only a
finite number of possible partitions. Analogously, a finite lattice can be divided into sub-volumes
in a finite number of ways.

Quantum mechanics divides things differently [1]; a quantum system can be partitioned if its
Hilbert space can be written as atensor productof Hilbert spaces. Consider, for instance, a system
described by the Hilbert spaceC4. The latter can be seen as a two-spin system and written asC4 = C2

A⊗C2
B, where indicesA andB identify each of the two identical componentsC2. Given

any orthonormal basis{|a〉, |b〉, |c〉, |d〉} of C4, one way of partitioning the system is through the
identification

|a〉 ≃ |0〉A⊗|0〉B, |b〉 ≃ |0〉A⊗|1〉B, |c〉 ≃ |1〉A⊗|0〉B, |d〉 ≃ |1〉A⊗|1〉B, (1.1)

where{|0〉A, |1〉A} and{|0〉B, |1〉B} are some choosen basis inC2
A andC2

B respectively. A different
partition is defined by the choice of another orthonormal basis, say{|a′〉, |b′〉, |c′〉, |d′〉}, to use for
the one to one correspondence (1.1). All possible partitions ofC4 are thus given by the elements of
the groupSU(4) except that, withinSU(4), there are also transformations that merely correspond
to a change of basis in either of the two factorsC2. These transformations have to be factored out
since they don’t change the partition, leaving us with the group SU(4)/SU(2)2: those are all the
inequivalent ways we can separate a two-spin1 system! Note therefore that quantum degrees of
freedom, even when finite, can be split in an infinite number ofways. Not only can you choose
whether some of them belong to, say, subsystemA or B, but, as opposed to the elements of a set
or the sites of a lattice, you can unitarily mix them before the splitting, in such a way that they
completely lose their individual identities.

Many appealing arguments in semi-classical gravity, such as those related to black hole ther-
modynamics and to the holographic principle, are based uponthe splitting of quantum degrees
of freedom into two parts, each belonging to separate regions of space, typically across a causal
horizon or just across some imaginary boundary. According to the holographic principle [2], when
gravity is taken into account, the total number of degrees offreedom is bounded by the area – rather
than the volume – of the region. A breakdown of locality has also been invoked (e.g. [3]) in relation
to theblack hole information-loss paradox. Such hints are clearly in conflict with local quantum
field theory and call for a deep reassessment of our current physical understanding. Instead of
venturing into the highly arbitrary and unknown realm of possible non-local theories, here we take
the rather conservative point of view of maintaining the basic dynamics of our successful quantum
theories (e.g. the Hamiltonian of the Standard Model) and just allowing some flexibility when it

1More generally, adN-dimensional Hilbert space can be partitioned intoN smaller systems each of dimensiond
and such partitions are in one to one correspondence with theelements ofSU(dN)/SU(d)N.
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comes to dividing their quantum degrees of freedom according to distinct regions of space. Such a
“pre-geometric" approach [4] may look a bit fictitious since, after all, locality is already built into
quantum field theory and the correct “local” tensor product structure should turn out to be the one
actually induced by the local fields. In the rest of this paperwe question this established point of
view by comparing a few aspects of the standard localizationprocedure with those of an alternative
one, induced by the “Newton-Wigner” operators [5]. Our maininterest, rather than just philosoph-
ical, is to present a different rationale to be possibly applied in semiclassical gravity whenever it
comes to isolating a bunch of “local” degrees of freedom. A more thoroughgoing and operationally
based case for alternative localization schemes will appear elsewhere [6].

Although the general approach that we are following here is fairly recent [4], Newton-Wigner
(NW) operators are almost 60 years old. In this paper we review aspects of the standard and
NW localization schemes that, to some extent, are already known in the literature, but in the new
light of [4]. At the end of section 4 we also mention some new results that will appear in more
detail elsewhere [7]. We will work in the Schroedinger picture where observables do not evolve
in time. We will be rather cavalier about the mathematical subtleties involved with continuous
tensor products: we assume implicitly the existence of IR and UV regulators which make the total
dimension ofH finite.

2. The Two Localization Schemes

It is possible to assign a tensor product structure (TPS) to asystem by specifying a set of acces-
sible observables [8]. Consider a quantum system divided into two parts,P andR: H = HP⊗HR.
P stands for “place” andR stands for “rest of the system”. Which tensor decompositionactually
dividesH into “places” is the matter of the present debate. If we have two sets of observables,A

j
P

andA
j

R, separately defined in subsystemP andR respectively, then we can trivially extend such
observables to the entire system as follows,

A
j

P −→ A
j(P) ≡ A

j
P ⊗1R, A

j
R −→ A

j(R) ≡ 1P⊗A
j

R, (2.1)

i.e. we just make them act as the identity on the other subsystem. By construction we have

[A j(P),A k(R)] = 0. (2.2)

The basic idea here (see [8] for more detail and mathematicalrigor) is that the converse is also true.
That is if we isolate two subalgebrasA (P) andA (R), within the algebra of observables acting
on H , satisfying (2.2), then they induce a unique2 bipartitionH = HP⊗HR. Since in quantum
field theory (QFT) the usual local observables commute at space-like separated events, we have a
straightforward realization of (2.2) and we can use local fields to define a local TPS at each timet.

At the risk of being pedantic we will be more explicit. Consider a scalar fieldφ , together with
its conjugate momentumπ, and a region of spaceP at some fixed timet in Minkowski spacetime.
By a “localization procedure" we mean a rationale that relates the physical volumeP to its quantum
degrees of freedomP by partitioning the total Hilbert spaceH of the field intoHP⊗HR. If p is a

2Actually, only if the two subalgebras generate the entire algebra of operators onH [?]
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point in P i.e. p ∈ P andr is not, i.e.r ∈ R, then from the usual commutation relations we clearly
have that

[φ(p),φ(r)] = [π(p),π(r)] = [φ(p),π(r)] = 0. (2.3)

Also linear combinations ofφ , π and their spatial derivatives commute if they belong to the two
separate regionsP andR. In other words, relation (2.2) is satisfied if we take as the algebra of
operatorsA (P) the one generated by the local fields inP. We call the corresponding partition the
standard TPSor thestandard localization scheme.

Before introducing the Newton-Wigner localization schemewe first specify the Hamiltonian
H of the field system. For simplicity we consider a free scalar field φ of massm:

H =

∫

d3kwk a†
k ak , (2.4)

where the usual infinite vacuum contribution has been subtracted,wk =
√

k2+m2 and operatorsak

satisfy the commutation relation[ak ,ak′ ] = 0, [ak ,a
†
k′ ] = δ 3(k −k ′). The non self-adjoint Newton-

Wigner fieldsa(x) are just defined as the Fourier transform ofak :

a(x) =
1

(2π)3/2

∫

d3kak eik·x, a†(x) =
1

(2π)3/2

∫

d3ka†
k e−ik·x. (2.5)

On the other hand, in the definition of the relativistic fieldsφ , the invariant relativistic measure
(2wk)

−1/2 appears in the integral, namely:

φ(x) =
1

(2π)3/2

∫

d3k√
2wk

(

akeik·x +a†
ke−ik·x

)

. (2.6)

Eq. (2.5) can be seen as a Bogoliubov transformation that doesn’t mix creators with annihilators
and therefore doesn’t change the particle content of the system. As for any Bogoliubov transfor-
mation the commutation relations are preserved, i.e.[a(x),a(x′)] = 0, [a(x),a†(x′)] = δ 3(x− x′).
As before, ifp ∈ P andr ∈ R (i.e. r /∈ P), we have

[a(p),a(r)] = [a(p),a†(r)] = 0, (2.7)

so that the subalgebras produced by the Newton-Wigner fieldsalso induce a TPS onH . (Also,
for instance, the operatorsak induce a TPS, but it goes without saying that such TPS is a “totally
delocalized” one, being associated with modes of given momentum).

3. Some Properties of the two Schemes

3.1 The Hamiltonian is Non-Local in NW

Perhaps the most striking difference between these two schemes is that interactions are local
in the standard localization scheme but not in the Newton-Wigner one. The Hamiltonian is in fact
a sum of pieces that are local only in the standard TPS:

H =

∫

d3xH(x) , (3.1)
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(hereH(x) is the Hamiltonian density), but not in the Newton-Wigner one. For instance, in the
case of a free scalar field, from eqs. (2.4) and (2.5) we have

H =
∫

d3xd3yKxy a†(x)a(y). (3.2)

The kernel inside the integral is a function of|x−y| that dies off asKxy ∼ e−m|x−y| for |x−y|≫m−1

and Kxy ∝ |x− y|−4 in the massless case. Non locality is therefore exponentially suppressed at
distances larger than the Compton wavelength. For masslessfields these effects are much more
serious although, in the more realistic case of several – massive and massless – fields interacting
with each other, it is not yet clear to us how to extend the NW localization.

On the Compton wavelength scales one should also expect violations of causality. By switch-
ing to the Heisenberg picture, not surprisingly, NW fields donot commute at spacelike separated
events, they do commute only if they belong to the same hypersurfacet = const. As opposed to
φ(x, t), a(x, t), as well asπ(x, t), are clearly not relativistically invariant objects, since their defini-
tion depends on a foliation of spacetime intot = consthypersurfaces that has been choosen at the
beginning. A covariant extension ofa(x, t) has therefore to include the hypersurface as a variable
[9]. In other words,a has to be a function not only of(x, t) but also of the future-pointing, unit
4-vectorη µ that locally represents the observer’s quadrivelocity.

3.2 Every Region of Space has its own Fock Structure in NW

The Hilbert space of our field theory has a Fock structure:

H = C⊕H1⊕ . . .⊕Hn⊕ . . . , (3.3)

whereH1 is the single particle space and then-particles space,Hn, is given by the symmetric
tensor product ofn copies ofH1. We have seen that a localization scheme is determined when
a local algebra of operatorsA (P), corresponding to a volumeP, is specified. InA (P), one can
always findladder operators, that is, operators that take a vector ofH j into one ofH j+1. Accord-
ing to the NW scheme, these are just the NW operatorsa†(p) of eq. (2.5), withp ∈ P, and their
superpositions. In the standard formalism, on the other hand, one can consider the negative energy
part of (2.6):

φ−(p) =
1

(2π)3/2

∫

d3k√
2wk

a†
ke−ik·p (3.4)

and superpositions. By applying the ladder operators ofA (P) and A (R) to the vacuum state,
we find two linear varietiesP1 andR1 in H1, representing the one-particle excitations inside and
outsideP according to some localization scheme. Accordingly, the single particle spaceH1 de-
composes into a direct sum,

H1 = P1⊕R1 . (3.5)

The key point here is thatP1 andR1 are not necessarily orthogonal. They are in NW because of
the commutation relations (2.7) but not in the standard localization scheme, since the two-point
function 〈0|φ(x)φ(x′)|0〉 (without T-product!) doesn’t vanish outside the lightcone. WhenP1 and
R1 are orthogonal, one can make the identification

P1 −→ P1⊗|0〉R, R1 −→ |0〉P⊗R1, (3.6)

5
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which, rather intuitively, means that a particle well localized insideP leavesR “empty” and vice
versa. This is not possible ifP1 andR1 are not orthogonal because the RHSs of (3.6) are orthogonal
by construction.

In the NW scheme we can generalize the identification (3.6) and extend it to the whole Hilbert
space [10, 7]. Then-particles space, being a symmetric tensor product of copies of (3.5), decom-
poses into

Hn =
n
⊕

k=0

Pk⊗Rn−k , (3.7)

wherePk, Rk represent symmetric tensor powers ofP1 andR1 respectively. Again, the intuitive
interpretation here is “if I haven particles they can be all inP and leaveR empty, or I can have
n−1 particles inP and one particle inR, or n−2 etc. . . ”. The entire Fock spaceH decomposes
into two Fock spacesHP andHR:

H =
∞
⊕

n=0

Hn =
∞
⊕

n=0

n
⊕

k=0

Pk⊗Rn−k =
∞
⊕

n,m=0

Pn⊗Rm≡ HP⊗HR . (3.8)

This is not true in the standard localization scheme, where the correspondingHP andHR are not,
independently, Fock spaces.

To summarize, in the NW caseP1 and R1 are orthogonal subspaces ofH1 that correspond
precisely to the regions of space of first quantization3. Thus, in the NW scheme we can fairly
interpret each volume as a subsystem with an internal Fock structure compatible with the global
one. On the contrary, in the standard scheme the state of a particle localized inP is not orthogonal to
that of a particle localized inR; as a consequence, we can still consider each volume as a subsystem,
but not as a Fock space: particles are not separately defined in HP andHR (see also [11] on this).
This is strictly related to the vacuum being entangled in thestandard scheme. More on this in Sec.
4.

3.3 NW allows “Strictly Localized” States

The usual scheme seriously challenges any idea of “localized state”. It sounds very natural to
define a state|ψ〉 as “strictly localized” [12] outsideP if for any possible observableA in A (P),
〈ψ |A|ψ〉 = 〈0|A|0〉. In other words, if we excite some degrees of freedom that are“strictly local-
ized” outsideP, the state of affairs insideP is the same as the one of the vacuum, and I have no
chance of detecting something different from the vacuum inside P by using the local operations
A (P). It turns out that no state with finite energy has this property in the standard localization
scheme. The state|ψ〉 ≡ φ(r)|0〉 which is commonly described as “a particle at positionr ” is in
fact different from the vacuum in any regionP with r /∈ P, i.e. ρP ≡ TrR|ψ〉〈ψ | 6= TrR|0〉〈0|. This
property, which can be traced back to Reeh-Schlieder theorem [20], is related, once again, with the
fact that the vacuum is entangled in the standard scheme. On the other hand, low energy excitations
can be “strictly local” in the NW scheme because of the factorization (3.6) that leavesP empty and
in its “local vacuum” whenever we excite some degrees of freedom somewhere else (i.e. inR).

3Note that in the first quantization formalism regions of space are subspaces ofH , rather than subsystems!
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4. Entropy

Although expressed as the integral of a local density, the energy (3.1) hides a certain amount of
non-extensiveness. By isolating, as before, a regionP from the restRof Minkowski space, one eas-
ily realizes thatH 6= H(P)+H(R). Just adding the inside and outside contribution,H(P)+H(R),
in fact, leaves out of the Hamiltonian the UV-divergent contact term coming from the gradients
across the boundary ofP. It is because of such interaction terms that the vacuum is entangled in
the standard localization scheme: its Von Neumann entropy is UV-divergent and proportional to
the boundary ofP [13].

Von Neumann entropy is also known (see e.g. [14]) to be the appropriate generalization of
thermodynamical entropy for generic quantum states. In thecase of conformal field theories the
Von Neumann entropy of a region/subsystem has been calculated for a thermal stateρ ∝ e−βH in
1+1 [15] and – using insights from AdS/CFT correspondence – also in higher dimensions [16].
In such QFT calculations, in order to recover a thermodynamically sensible result (e.g.Stherm≃
VT3 for a massless field in 3 dimensions), the divergent contribution of the vacuum has to be
systematically subtracted. Such a subtraction procedure,as noted in [17], is problematic because
of the non-trivial dependence of the correction on area. Moreover, one can construct, starting from
the vacuum, quitead hocstates of higher and higher energy which are less and less entangled: after
the subtraction those states would end up having a negative entropy!

Clearly, a basic issue to be understood is whether or not sucha divergent entropy actually
accounts for practically measurable correlations, i.e. whether or not it has any operational meaning.
If the procedure described in [18] to create EPR pairs from vacuum entanglement turned out to be
experimentally practicable, this would strongly suggest that the standard localization scheme is the
correct way to isolate local quantum degrees of freedom.

In this respect, the NW localization scheme can be seen as a sort of UV-regulator. If we isolate
a region of space according to the NW procedure we find in fact that the vacuum is a product state
|0〉 = |0〉P⊗|0〉R and the corresponding Von Neumann entropy is zero. In the free field case (2.4),
if we switch the temperature on, the (non normalized) reduced density matrixρP ∝ TrRe−βH is
block diagonal in each Fock subspace of given particle number. The trace of itsnth power nicely
rearranges in an exponential, giving [7]

TrP ρn
P = exp

(

∞

∑
j=1

1
j
TrK jn

)

. (4.1)

HereK is the two-point function

K(p1,p2) ≡ P〈0|a(p1)ρPa†(p2)|0〉P

P〈0|ρP |0〉P
, (4.2)

wherea(p) anda†(p) are the Newton-Wigner operators (2.5) andp1 andp2 are points insideP.
The trace on the RHS of (4.1) is made inside subsystemP and limited to one-particle subspace:

TrKm ≡
∫

p1...pm∈P
dp1dp2 . . .dpmK(p1,p2)K(p2,p3) . . .K(pm,p1). (4.3)

7



P
o
S
(
Q
G
-
P
h
)
0
3
2

Volumes of Space as Subsystems Federico Piazza

From (4.1) we can then use the trick (see e.g. [17])

S≡ −TrP(ρP lnρP) =

(

− d
dn

+1

)

lnTrP ρn
P

∣

∣

∣

∣

n=1
(4.4)

to calculate the Von Neumann entropyS. While referring to [7] for more details, here we point out
that the entropy (4.4) – in the NW localization scheme – is a thermodynamically sensible quantity:
it doesn’t have UV divergences, it vanishes at zero temperature and gradually increases to reach
theS∼VT3 behavior (for a massless field) in the high temperatureT ≫V−1/3 limit. At no stage
have we found an area dependent contribution.

5. Conclusions

We have considered two different localization schemes i.e.two different ways of relating some
physical volumeP to its quantum degrees of freedomP by partitioning the total Hilbert spaceH
of the field intoHP⊗HR. We stress again that going from one tensor product structure HP⊗HR

to another is not like playing with the points of space acrossthe border ofP, or choosing some dif-
ferent smearing or compact support function for our definitions. As explained in the introduction,
changing TPS is deeper than “playing with the parts” of a set in the usual intuitive sense: hereP is
a subset ofR3, P is a subsystem.

As long as we are concerned only with the internal dynamics ofthe fields, all TPSs describe
precisely the same state of affairs: we are just consideringdifferent – equally valid – partitions
into subsystems of the field system, not changing its dynamics (cross sections, decay rates etc. . . ).
Things may possibly be different when also gravity is taken into account. In the standard approach,
gravity is included in the action principleS=

∫

d4x(R+Lmatter), solidly binding us to the standard
localization scheme and to a local (gravity + matter) theory. Rather adventurously, one may instead
stick with the genuine and naive idea that (semiclassical) gravity is really just the geometry of the
physical spacetime. Then it would be crucial to understand how the matter degrees of freedom
feeding into Einstein equations are “localized” in the physical spacetime itself. By incorporat-
ing alternative localization schemes, semiclassical gravity inherits from the matter fields a certain
amount of non-locality (see eq. 3.2), although a consistentformulation of such a non local theory
(gravity + matter) has yet to be written and surely calls for amajor breakthrough.
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