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1. Subsystems and Local Subsystems

Among other famously intriguing and counterintuitive asgeof quantum physics, relatively
little attention has been paid to the quantum mechanicalrigiti®n of a composite system. The
partitions of a quantum system — i.e. all possible ways thiatamtum system can be divided into
“parts” — have a mathematical structure completely difiéfeom, for example, the partitions of a
set in set theory. In set theory you can choose a bi-parthi@hby going through each element of
a (countable) set and deciding whether it belongs to subsetBA Clearly, finite sets admit only a
finite number of possible partitions. Analogously, a fina#ite can be divided into sub-volumes
in a finite number of ways.

Quantum mechanics divides things differently [1]; a quanBystem can be partitioned if its
Hilbert space can be written agensor producof Hilbert spaces. Consider, for instance, a system
described by the Hilbert spad&®. The latter can be seen as a two-spin system and written as
C* = €3 ® C3, where indicesA and B identify each of the two identical componer@d. Given
any orthonormal basi§|a), |b), |c), |d)} of C*, one way of partitioning the system is through the
identification

) ~|0)a®[0)s, |b)=[0)a®@|l)s, [6)=|L)ax|0)s, |d)=[hax[ls,  (1.1)

where{|0)a, |1)a} and{|0)g, |1)g} are some choosen basisig andC3 respectively. A different
partition is defined by the choice of another orthonormaishasy{|a'), |b'), |c), |d’)}, to use for
the one to one correspondence (1.1). All possible parsitafit* are thus given by the elements of
the groupSU(4) except that, withirSU(4), there are also transformations that merely correspond
to a change of basis in either of the two fact6fs These transformations have to be factored out
since they don't change the partition, leaving us with theugrSU(4)/SU(2)?: those are all the
inequivalent ways we can separate a two-5giystem! Note therefore that quantum degrees of
freedom, even when finite, can be split in an infinite numbeways. Not only can you choose
whether some of them belong to, say, subsyséear B, but, as opposed to the elements of a set
or the sites of a lattice, you can unitarily mix them before #iplitting, in such a way that they
completely lose their individual identities.

Many appealing arguments in semi-classical gravity, sucthese related to black hole ther-
modynamics and to the holographic principle, are based tipersplitting of quantum degrees
of freedom into two parts, each belonging to separate regifrspace, typically across a causal
horizon or just across some imaginary boundary. Accordirtge holographic principle [2], when
gravity is taken into account, the total number of degredseedom is bounded by the area — rather
than the volume — of the region. A breakdown of locality ha® &leen invoked (e.g. [3]) in relation
to theblack hole information-loss paradoXSuch hints are clearly in conflict with local quantum
field theory and call for a deep reassessment of our curreygigdl understanding. Instead of
venturing into the highly arbitrary and unknown realm of gibke non-local theories, here we take
the rather conservative point of view of maintaining theibdgnamics of our successful quantum
theories (e.g. the Hamiltonian of the Standard Model) astl gllowing some flexibility when it

IMore generally, aN-dimensional Hilbert space can be partitioned iNt@emaller systems each of dimension
and such partitions are in one to one correspondence witiéneents oB8U(dN)/SU(d)N.
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comes to dividing their quantum degrees of freedom accgrirdistinct regions of space. Such a
“pre-geometric" approach [4] may look a bit fictitious sineéter all, locality is already built into
guantum field theory and the correct “local” tensor prodaiatcture should turn out to be the one
actually induced by the local fields. In the rest of this paperquestion this established point of
view by comparing a few aspects of the standard localizgifosedure with those of an alternative
one, induced by the “Newton-Wigner” operators [5]. Our materest, rather than just philosoph-
ical, is to present a different rationale to be possibly &gpin semiclassical gravity whenever it
comes to isolating a bunch of “local” degrees of freedom. Aertboroughgoing and operationally
based case for alternative localization schemes will apglsawhere [6].

Although the general approach that we are following herairyyfrecent [4], Newton-Wigner
(NW) operators are almost 60 years old. In this paper we wewdspects of the standard and
NW localization schemes that, to some extent, are alreadwiirin the literature, but in the new
light of [4]. At the end of section 4 we also mention some nesults that will appear in more
detail elsewhere [7]. We will work in the Schroedinger pretwvhere observables do not evolve
in time. We will be rather cavalier about the mathematicditleties involved with continuous
tensor products: we assume implicitly the existence of IR dX regulators which make the total
dimension of finite.

2. The Two Localization Schemes

Itis possible to assign a tensor product structure (TPS}ysi@m by specifying a set of acces-
sible observables [8]. Consider a quantum system dividedwo partsP andR: 77 = 7p ® JR.
P stands for “place” an® stands for “rest of the system”. Which tensor decomposiéictually
divides.7Z into “places” is the matter of the present debate. If we haxedsets of observables{,gj
and de, separately defined in subsystéhand R respectively, then we can trivially extend such
observables to the entire system as follows,

) — F(P) = # @1, A — (R = 1pe A, (2.1)
i.e. we just make them act as the identity on the other sudasydBy construction we have
[«7)(P), /*(R)] = 0. (2.2)

The basic idea here (see [8] for more detail and mathemaiiga) is that the converse is also true.
That is if we isolate two subalgebrag(P) and .7 (R), within the algebra of observables acting
on s, satisfying (2.2), then they induce a uniduepartition . = . @ #&. Since in quantum
field theory (QFT) the usual local observables commute atespilee separated events, we have a
straightforward realization of (2.2) and we can use locddifi¢o define a local TPS at each titne
At the risk of being pedantic we will be more explicit. Coresich scalar fieldp, together with
its conjugate momentunt, and a region of spade at some fixed timé& in Minkowski spacetime.
By a “localization procedure" we mean a rationale that esléihe physical volume to its quantum
degrees of freedorR by partitioning the total Hilbert spac#” of the field intos7p ® J7&. If pis a

2Actually, only if the two subalgebras generate the entigelata of operators o [?]
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point inPi.e. p € P andr is not, i.e.r € R, then from the usual commutation relations we clearly
have that

[@(p),o(r)] = [m(p),n(r)] = [@(p),n(r)] = 0. (2.3)

Also linear combinations o, 1T and their spatial derivatives commute if they belong to the t
separate regionB andR. In other words, relation (2.2) is satisfied if we take as tlyelara of
operatorse/ (P) the one generated by the local fieldsFinWe call the corresponding partition the
standard TP®r thestandard localization scheme

Before introducing the Newton-Wigner localization schemefirst specify the Hamiltonian
H of the field system. For simplicity we consider a free scakddip of masam:

H = /d3kwkalak, (2.4)

where the usual infinite vacuum contribution has been sctigilavy, = v/ k2 + n? and operatorsy
satisfy the commutation relatiday, ax’] = 0, [ak,al,] = 63(k — k). The non self-adjoint Newton-
Wigner fieldsa(x) are just defined as the Fourier transformagf

a(x) = ﬁ/d%ak e alx) = ;/d?’ka{ e kX, (2.5)

On the other hand, in the definition of the relativistic fiefplsthe invariant relativistic measure
(2wy)~Y/2 appears in the integral, namely:

1 d3k ik-x T —ik-x
P(x) = (271)3/2/\/% (ake'k +ale ) (2.6)

Eq. (2.5) can be seen as a Bogoliubov transformation thatrdomix creators with annihilators
and therefore doesn’t change the particle content of thieisysAs for any Bogoliubov transfor-
mation the commutation relations are preserved,[a&),a(x')] = 0, [a(x),a’ (x')] = 63(x — X).
As before, ifp € Pandr € R(i.e. r ¢ P), we have

[a(p),a(r)] = [a(p).a'(r)] = 0, (2.7)

so that the subalgebras produced by the Newton-Wigner fadgddsinduce a TPS os?. (Also,
for instance, the operatoeg induce a TPS, but it goes without saying that such TPS is allyot
delocalized” one, being associated with modes of given nmbuame).

3. Some Properties of the two Schemes

3.1 The Hamiltonian is Non-Local in NW

Perhaps the most striking difference between these twarsehés that interactions are local
in the standard localization scheme but not in the NewtogrAafi one. The Hamiltonian is in fact
a sum of pieces that are local only in the standard TPS:

H= /d3xH(x), (3.1)

4
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(hereH (x) is the Hamiltonian density), but not in the Newton-WigneeorfFor instance, in the
case of a free scalar field, from egs. (2.4) and (2.5) we have

H— / d*x Py Ky al (x)a(y). (3.2)

The kernel inside the integral is a function|ef-y| that dies off axyy ~ e~™* VI for [x—y| > m™!
andKyy [0 [x —y|~* in the massless case. Non locality is therefore expongnsappressed at
distances larger than the Compton wavelength. For madiidds these effects are much more
serious although, in the more realistic case of several -siveaand massless — fields interacting
with each other, it is not yet clear to us how to extend the N@éliaation.

On the Compton wavelength scales one should also expeativizd of causality. By switch-
ing to the Heisenberg picture, not surprisingly, NW fieldsnid commute at spacelike separated
events, they do commute only if they belong to the same hypexset = const As opposed to
o(x,1), a(x,t), as well ag(x,t), are clearly not relativistically invariant objects, sniheir defini-
tion depends on a foliation of spacetime itte consthypersurfaces that has been choosen at the
beginning. A covariant extension afx,t) has therefore to include the hypersurface as a variable
[9]. In other words,a has to be a function not only @k,t) but also of the future-pointing, unit
4-vectorn* that locally represents the observer’s quadrivelocity.

3.2 Every Region of Space has its own Fock Structure in NW

The Hilbert space of our field theory has a Fock structure:
H=CqIAd.. 0. .., (3.3)

where 77 is the single particle space and theoarticles spaces7;, is given by the symmetric
tensor product oh copies of73. We have seen that a localization scheme is determined when
a local algebra of operators’(P), corresponding to a volumie, is specified. Ine7(P), one can
always findladder operatorsthat is, operators that take a vector#f into one of.# ;1. Accord-

ing to the NW scheme, these are just the NW operaabfp) of eq. (2.5), withp € P, and their
superpositions. In the standard formalism, on the othed hame can consider the negative energy

part of (2.6):
1 d3k T —ik-p
(p) = 1 34
and superpositions. By applying the ladder operators7gP) and <7 (R) to the vacuum state,
we find two linear varietie® andR; in 773, representing the one-particle excitations inside and
outsideP according to some localization scheme. Accordingly, tinglsi particle space?; de-

composes into a direct sum,

J4=PioR;. (3.5)

The key point here is thd® andR; are not necessarily orthogonal. They are in NW because of
the commutation relations (2.7) but not in the standardlipation scheme, since the two-point
function (0]@(x) (X )|0) (without T-product!) doesn’t vanish outside the lightcoghenP; and

R, are orthogonal, one can make the identification

P — PL®|0)R, Ry — [0)p ® Ry, (3.6)
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which, rather intuitively, means that a particle well Idzatl insideP leavesR “empty” and vice
versa. This is not possible i andR; are not orthogonal because the RHSs of (3.6) are orthogonal
by construction.

In the NW scheme we can generalize the identification (3.8)exttend it to the whole Hilbert
space [10, 7]. The-particles space, being a symmetric tensor product of soqfi¢3.5), decom-
poses into

n
o= PR R, (3.7)
k=0
whereR, R¢ represent symmetric tensor powersRafand R; respectively. Again, the intuitive
interpretation here is “if | have particles they can be all iR and leaveR empty, or | can have
n— 1 particles inP and one particle ifR, orn— 2 etc...”. The entire Fock spac#” decomposes
into two Fock spaces? and /g:

Y n

H =P A= PPROR«= P PORn= 21k (3.8)
0

n=0 n=0k= n,m=0

This is not true in the standard localization scheme, whHegecorrespondingzp and.7#g are not,
independently, Fock spaces.

To summarize, in the NW cad® andR; are orthogonal subspaces .¢ff that correspond
precisely to the regions of space of first quantizatiomhus, in the NW scheme we can fairly
interpret each volume as a subsystem with an internal Fouoktate compatible with the global
one. On the contrary, in the standard scheme the state diie@é&calized inP is not orthogonal to
that of a particle localized iR; as a consequence, we can still consider each volume asysterms
but not as a Fock space: particles are not separately defing@ and.7& (see also [11] on this).
This is strictly related to the vacuum being entangled instiaedard scheme. More on this in Sec.
4,

3.3 NW allows “Strictly Localized” States

The usual scheme seriously challenges any idea of “lochiimte”. It sounds very natural to
define a statéy) as “strictly localized” [12] outsidé if for any possible observabla in .7 (P),
(W|AlY) = (0|A|0). In other words, if we excite some degrees of freedom thatstrietly local-
ized” outsideP, the state of affairs insidE is the same as the one of the vacuum, and | have no
chance of detecting something different from the vacuurid&B by using the local operations
o/ (7). It turns out that no state with finite energy has this prgpertthe standard localization
scheme. The statg/) = ¢(r)|0) which is commonly described as “a particle at positiéns in
fact different from the vacuum in any regiéhwith r ¢ P, i.e. pp = Trr|) (| # Trg|0)(0|. This
property, which can be traced back to Reeh-Schlieder thef#6], is related, once again, with the
fact that the vacuum is entangled in the standard schemeheQnttier hand, low energy excitations
can be “strictly local” in the NW scheme because of the faz#tion (3.6) that leaveB empty and
in its “local vacuum” whenever we excite some degrees ofioee somewhere else (i.e. R).

SNote that in the first quantization formalism regions of spare subspaces g#, rather than subsystems!



Volumes of Space as Subsystems Federico Piazza

4. Entropy

Although expressed as the integral of a local density, teeggn(3.1) hides a certain amount of
non-extensiveness. By isolating, as before, a reBifrom the resR of Minkowski space, one eas-
ily realizes thaH # H(P) + H(R). Just adding the inside and outside contributidiiP) + H (R),
in fact, leaves out of the Hamiltonian the UV-divergent emtitterm coming from the gradients
across the boundary &. It is because of such interaction terms that the vacuumtangted in
the standard localization scheme: its Von Neumann entrepyM-divergent and proportional to
the boundary oP [13].

Von Neumann entropy is also known (see e.g. [14]) to be theoppiate generalization of
thermodynamical entropy for generic quantum states. Ircdse of conformal field theories the
Von Neumann entropy of a region/subsystem has been calduiat a thermal statp 0 e PH in
1+1 [15] and — using insights from AdS/CFT correspondencése- i higher dimensions [16].
In such QFT calculations, in order to recover a thermodynalyi sensible result (e.0Sherm =
VT3 for a massless field in 3 dimensions), the divergent corttdbuof the vacuum has to be
systematically subtracted. Such a subtraction procedrepted in [17], is problematic because
of the non-trivial dependence of the correction on area.ddeer, one can construct, starting from
the vacuum, quitad hocstates of higher and higher energy which are less and legsgatl: after
the subtraction those states would end up having a negativeps!

Clearly, a basic issue to be understood is whether or not audiiergent entropy actually
accounts for practically measurable correlations, i.eetiver or not it has any operational meaning.
If the procedure described in [18] to create EPR pairs froouuen entanglement turned out to be
experimentally practicable, this would strongly suggkat the standard localization scheme is the
correct way to isolate local quantum degrees of freedom.

In this respect, the NW localization scheme can be seen asaf $8V/-regulator. If we isolate
a region of space according to the NW procedure we find in Fedtthe vacuum is a product state
|0) =|0)p ® |0)r and the corresponding Von Neumann entropy is zero. In theefiedd case (2.4),
if we switch the temperature on, the (non normalized) redutensity matrixop O Trre PH is
block diagonal in each Fock subspace of given particle numibee trace of its'" power nicely
rearranges in an exponential, giving [7]

Trepd = exp(Z %TrKj”> . (4.1)
=1

HereK is the two-point function

p(0a(p1) ppa’ (p2)|0)p
p(0/pp|0)p ’

K(p1,p2) = (4.2)

wherea(p) anda’(p) are the Newton-Wigner operators (2.5) gmdandp, are points insidé.
The trace on the RHS of (4.1) is made inside subsy®eand limited to one-patrticle subspace:

TrK™ = /p ; eﬁdloldloz...dmmK(lol,|Oz)K(|Oz,103)--.K(lom,lol)- (4.3)
1---Mm
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From (4.1) we can then use the trick (see e.g. [17])

d
= —Trp(ppinpp) = <—%+1> InTrp pp

(4.4)
n=1

to calculate the Von Neumann entroyWhile referring to [7] for more details, here we point out
that the entropy (4.4) — in the NW localization scheme — isearttodynamically sensible quantity:
it doesn’'t have UV divergences, it vanishes at zero temperadnd gradually increases to reach
the S~ VT2 behavior (for a massless field) in the high temperafure V /2 limit. At no stage
have we found an area dependent contribution.

5. Conclusions

We have considered two different localization schemeswe different ways of relating some
physical volumeP to its quantum degrees of freedd?rby partitioning the total Hilbert space”
of the field into.7p ® J#&. We stress again that going from one tensor product steigiire 7R
to another is not like playing with the points of space actbssorder oP, or choosing some dif-
ferent smearing or compact support function for our detingi As explained in the introduction,
changing TPS is deeper than “playing with the parts” of arsété usual intuitive sense: hePas
a subset oR3, P is a subsystem.

As long as we are concerned only with the internal dynamidbefields, all TPSs describe
precisely the same state of affairs: we are just considatifigrent — equally valid — partitions
into subsystems of the field system, not changing its dynaucioss sections, decay rates etc...).
Things may possibly be different when also gravity is takeén account. In the standard approach,
gravity is included in the action princip@= [ d*x(R+ Zmater), solidly binding us to the standard
localization scheme and to a local (gravity + matter) theBgther adventurously, one may instead
stick with the genuine and naive idea that (semiclassicaNity is really just the geometry of the
physical spacetime. Then it would be crucial to understamw the matter degrees of freedom
feeding into Einstein equations are “localized” in the pbgbkspacetime itself. By incorporat-
ing alternative localization schemes, semiclassicaliyramherits from the matter fields a certain
amount of non-locality (see eq. 3.2), although a considtemtulation of such a non local theory
(gravity + matter) has yet to be written and surely calls fonaor breakthrough.
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