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1. Introduction

One of the most mysterious features of black holes is the thermal radiation emittedcontinu-
ously after a black hole has formed [1]. This radiation represents some sort of quantum instability
of the horizon, but exactly what kind of instability is still a mystery. Since the temperature of a
black hole is a function of the energy (mass), this implies an entropy for blackhole, an entropy
which is necessary to preserve the second law of thermodynamics when black holes are involved,
but also leads to many mysteries. Where is the radiation created? Is that entropy fundamental or is
it, a la Boltzmann, a statistical attribute of the black hole?

An uncomfortable aspect of Hawking’s derivation is that the radiation emittedat a timet
after the black hole has formed originates, in his calculations, from the zeropoint fluctuations in
the field at frequencies ofMet/4M in the early stages before the black hole has formed. Thus if we
consider the radiation emitted, say, 1 second after a solar mass black hole has formed, this radiation
originates from quantum fluctuations in the vacuum before the black hole formed, with an energy of
e105

times the mass of the whole universe. For such quantum fluctuations, even ifthey are vacuum
fluctuations, we do not expect a simple quantum field theory in a fixed background spacetime (the
arena in which Hawking did his calculation) to be an adequate approximation.

This has been noticed since shortly after the original paper, but since theHawking’s results are
so appealing, it was felt that the calculation, though obviously unphysicalin detail, was surely right
in principle. In 1981 [2], I noticed that sound waves in a background irrotational flow where the
fluid velocities exceeded the velocity of sound were mathematically exact analogs of scalar fields in
a black hole background spacetime, at least in the hydrodynamic approximation. Furthermore the
quantization of those sound waves (phonons) corresponded exactly tothe quantization of a scalar
field theory in a background black hole spacetime. Thus one expects and,if one naively carries out
the analog of Hawking’s calculation, one gets that the horizon would emit sound quanta with some
temperature. In this sonic case, that temperature is given by

T =
1

4πc(x)
d(c(x)2− v(x)2)

dx

∣

∣

∣

∣

v(x)=c(x)
(1.1)

wherec(x) is the (perhaps spatially dependent) velocity of sound, and the expression is evaluated at
the point where the velocity of the fluid equals the velocity of sound. This sonic analog of a black
hole I called a dumb hole– from the phrase “deaf and dumb”– since such structures were incapable
of emitting sound. And the calculation of this temperature suffers from the sameexponential
dependence with time of the initial vacuum fluctuations. However, unlike the case for the black
hole, we know that hydrodynamics breaks down at short wavelengths.A fluid has a natural high
frequency and wave-number cutoff– at a minimum at the inter-atomic spacing. I.e., such a system
has no ultra-high frequency problem.

After Jacobson [4] pointed out that the dominant effect of the inter-atomicspacing was to
change the dispersion relation (relation between frequency and wave-number) away from linear,
I [5] was able to numerically model the modes in such a background flow, andshow, through
the positive and negative norm mixing of the modes, that these dumb holes would emit thermal
radiation even though those exponentially high frequencies were absent.The thermal effect was
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robust against high frequency changes in the theory. For a review ofthe status of the use of such
dumb holes to understand black hole evaporation, see for example Carlos Barceló et al. [6]

These dumb holes also present us with the opportunity of asking where the particles are actu-
ally created. Let us imagine a fluid containing sound waves with a dispersion relation as in Figure
1 and 2. This dispersion relation is such that there exists some common group and phase velocity
at the lowest frequencies, ask→ 0. The dispersion relation is crafted so that at intermediate fre-
quencies, the group and phase velocities are again equal, but at a commonvelocity that is smaller
than the low frequency one is. Finally at the highest wave-numbers, the dispersion relation drops
so that the group velocity goes to zero. While such a dispersion relation may be artificial, it does
allow us to ask which of the various velocities determine the temperature of the emitted radiation.
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Figure 1: The dispersion relation as a function of k andω. At high wave-numbers the relation flattens out,
but this regime is never probed by the wave-packets.
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Figure 2: The central part of the dispersion relation of Figure 1. Included are dotted lines with slope of 1,
0.75 and 0.5.

We now design the background flow of the fluid so that the derivative of the velocity, i.e., the
temperature, differs at the different possible horizons (the places where the fluid velocity equals
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the group, or phase velocity at different frequencies). I.e., at the point where the fluid flow equals
that intermediate common group and phase velocity, the background flow is taken to have a smaller
derivative than it has at the point in the flow where the velocity equals the lowwave-number group
and phase velocity. To be definite, I choose the fluid flow so that the the derivative is given by

dv
dx

∝

(

1−

(

v−1
∆v

)2
)

(1.2)

where∆v is half the difference between the maximum (inside the horizons) and minimum (outside)
of the velocity of the fluid, and the velocity of sound (at the lowest wave-numbers) has been taken
equal to 1.

Let us follow the evolution of a wave-packet which eventually becomes a thermal wave-packet
emitted by the dumb hole. At early times it is high frequency packet whose group velocity is much
smaller than the fluid flow. It is an outgoing packet, but because of its low group velocity it is
dragged by the fluid flow toward the horizon. Nearing the horizon, it is stretched by the differential
flow of the fluid, and its wave number decreases. It hugs the horizon, its wave-number steadily
decreasing until finally its wave-length is of the order of the size of the dumb hole, the group
velocity is greater than the velocity of the fluid, and it escapes from the hole.But which horizon?
Is it the point where the velocity of the fluid equals the phase, the group, orsome other velocity of
the wave? And, since the phase and group velocities depend on the wave-number, at which of the
ever changing wave-numbers is it the phase/group/other velocity of the packet which determines
the horizon location?

Since the fluid flow has a changing velocity and a changing derivative of velocity near the
v = 1 horizon, each of those possible horizons has a different rate of expansion – of stretching the
wave-packet. Each in principle therefore has a different temperature.Which of the temperatures
determines the temperature of the escaping radiation? Is it an average of allthe temperatures that
the wave-packet has encountered at the different horizons it has metbefore escaping? Is it the
horizon with its temperature (proportional todv

dr ) where the high frequency vacuum fluctuations
first encounter the horizon and begin to be red-shifted? Is it some intermediate horizon that the
wave-packet encounters during its red-shifting? Or is it the horizon forthe wave when it finally
leaves the horizon? If it is the temperature at the lowest frequencies whenthe wave finally escapes
the dumb hole, then one can argue that the properties of the horizon, of thedumb hole, at higher
frequencies, are irrelevant. The independence of the temperature on the prior horizons the wave-
packet met would then indicate that they had no effect on the particle creation rate. The thermal
particles are created at those lowest frequencies. The particle creationprocess is definitely a low-
frequency process.

If the group and phase velocities change, they cannot be equal to eachother at all wave-
numbers. If

dω
dk

=
ω
k

(1.3)

thenω = vk for some constant value ofv, and the group and phase velocities are constant.
Thus the lowest wave-number wave-packets escaping the hole must havegone though a fre-

quency regime where the group and phase velocities were not equal. Forthese frequencies, what
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place in the fluid flow corresponds to the horizon? Is the effective horizon which determines the
temperature of the emitted radiation located where the group velocity equals the fluid velocity,
where the phase velocity equals the fluid velocity, or some other place entirely?

2. Numerical model

In order to investigate this I used the same numerical procedure outlined in my 1995 paper [5].
The fluid flow is assumed to be cyclic –i.e., the flow and all modes are assumed to have periodic
boundary conditions. Thus the flow which establishes a black hole horizonin some place, must also
establish a white hole horizon (a horizon out of which modes can flow, but into which no mode can
penetrate.) Such cyclic flows are known to have instabilities, but I never carry the calculations far
enough to trigger those instabilities [7] (which arise from modes which circumnavigate the cyclic
system, and interfere with themselves or bounce back and forth between thewhite and black hole
horizons.) The procedure I follow is to start with a low wave number wave-packet entirely confined
to the region in which the fluid flow is constant. That packet is taken to be an outgoing packet (i.e.,
travelling away from the black hole horizon) and to have a sufficiently low wave-number that its
group velocity is larger than the fluid velocity in the region of the packet. The equations are now
solved backwards in time. At earlier times, that packet came from near the horizon. As we go
further back in time it is squeezed up against the horizon, and its wave-number becomes higher
and higher. Eventually, the wave-number becomes sufficiently high that themodes making up the
packet have a group velocity much less than the fluid flow velocity. Going evenfurther back in
time, that packet now moves away from the horizon (corresponding to thatmode being dragged
toward the horizon by the fluid flow if one looks at the mode forward in time) untilit is again
entirely contained in the region again where the velocity of the fluid is a constant.

The equation obeyed by these modes is assumed to be of the form

(∂t −∂xv(x))(∂t− v(x)∂x)φ(t,x)+F2(i∂x)φ(t,x) = 0 (2.1)

where all derivatives operate on everything to their right in a term, andω =±F(k) is the dispersion
relation of the wave if the background velocity is zero. The functional form for F that I take
has both the group (dF

dk ) and phase velocity (F(k)
k ) equal to 1 at the lowest frequencies and wave

numbers. There is then a transition to a regime where the group and phase velocities are again
almost equal with a value of both 0.75. Finally, the dispersion relation then makes a transition to
a regime where the slope is 0.5 and then at very large wave-numbers (whichare never achieved in
the evolution of the wave-packet), the group velocity drops to zero.

Note that the equation is time independent, andω is thus conserved. In principle, one could
solve this by separation of variables, and have a single ordinary differential equation inx, but for
genericF it would be of infinite order. Thus the resulting equation inx is in general impossible
to solve, especially for the dispersion relation I use. Corley and Jacobson [3] solved this ODE
numerically for a simple dispersion relation whereF2 was a low order (quadratic) polynomial in
∂x.

In a regime in whichv(x) is a constant, there is a definite relation betweenω , the temporal
frequency, andk the wave number. I.e., if the wave is entirely in a regime wherev(x) is constant,

5



P
o
S
(
Q
G
-
P
h
)
0
3
9

Where are the particles created in Black Hole evaporation? W. G. Unruh

ω andk obey

(ω− vk)2 = F2(k) (2.2)

Thus in such a regime one can determineω without solving the equations for all time and taking
the temporal Fourier transform.
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Figure 3: The group and phase velocity of the dispersion relation as a function of the frequency in the
constant part of the velocity profile. Note that as expected the phase velocity is monotonic, while the group
velocity is not. These curves include the parts where the group and phase velocities are both 1 and both near
0.75

In Figure 3, the group and phase velocities as seen by a stationary observer for a flowing fluid,
∂ω
∂k + v and ω

k + v are plotted as a function ofω for the particular dispersion relation I chose, in the
low velocity regime for the fluid.
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Figure 4: A blow-up by a factor of 100 of of the wave at timet = −2 showing the low frequency back-
scatter wave coming off the horizon.

Let me define the wave as a left travelling wave (away from the horizon) sothat the relation
betweenω andk in the low velocity regime is

ω− vk = +F(k). (2.3)
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A right travelling wave would have the opposite sign ofF in the constantv region. The packets
I start the calculation with are left travellers. What is somewhat surprizing isthat the direction
of travel of these waves seems to be almost conserved. There is some evidence in the numerical
calculations that left movers are turned into right movers by the equation of motion to a very small
degree. In Figure 4 we have the plot at the time -2.0. with the y axis expandedby a factor of
100. We see the long wavelength train which is a right-moving wave of relatively long wavelength.
This appears to have been generated as the left-going pulse shifted up in frequency at the horizon.
The creation of such right-movers here corresponds to the reflection from the region of changing
velocity near the dumb hole horizon. This corresponds to the reflection from the curvature of near
a black hole, leading to a non-zero albedo for waves incident on a black hole. Some insight into
why this occurs can be gleaned if we compare the equation of motion I used with

(∂t −∂xv(x)+F(∂x))(∂t− v(x)∂x−F(∂x))φ(t,x) = 0 (2.4)

(where derivatives operate on everything to their right). This equation differs from the above by a
term

−(F(∂x)v(x)∂x−∂xv(x)F(∂x))φ(t,x) (2.5)

where again all derivatives operate on everything to their right. This is non-zero only ifF(∂x) is not
linear in∂x, and such that the higher derivatives ofv(x) are non-negligible at those wave numbers.
I.e., one would expect the scattering of outgoing into ingoing waves to be small,and numerically
they are. However, that small scattering does seem to upset the calculationof the temperature at
the lowest frequencies.

In order to determine the particle creation rate, one starts (at late time) with a “positive norm"
wave-packet. In this context this will be a wave-packet with low wave-number entirely contained
in the regime wherev(x) = constant. Furthermore, the wave is assumed to be such thatω− vk =

−F(k) and such thatω > 0. These modes have positive norm where the norm is defined via the
conserved current for the scalar field given by

〈φ2,φ1〉=
i
2

∫

φ ∗2

(←−−−−−−−−→∂t − v∂x

)

φ1(t,x)dx (2.6)

One now evolves the system backwards in time until the wave-packet is againentirely con-
tained within a regions wherev(x) is a constant. One can again determineω in terms ofk. However,
one will now discover that the constantω modes which make up the mode are not entirely positive
norm. There will be components withk < 0, which can easily be seen to also have negative norm.
This negative norm component is a measure of how many particles would be produced by the hole
in the “final mode" in the quantum regime. I.e., it is directly related to the Bogoliubov coefficients
of the transformation from initial to final waves.

Note that sinceω is conserved, one can take any initial wave-packet which contains a broad
range of values ofω and determine the Bogoliubov coefficient at each frequency contained in that
packet.

At each frequency, since the evolution of the field is linear, the density matrixis Gaussian, and
thus is thermal. The ratio between the positive and negative norm componentsat each frequency is
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thus a measure of the temperature of that mode. In particular the ratio of the norm of the negative to
positive norm components is juste−

ω
kT whereT is the temperature corresponding to this particular

mode.

3. Numerical technique

As in my previous paper [5], the problem is solved by a combination of finite differencing
and Fourier transform. At each time the the term withF is evaluated in the Fourier regime, using
fast Fourier transforms and multiplication byF2(k) which is defined to be real. The convective
derivatives on the other had are solved by an implicit solver scheme to ensure stability of the
evolution. Since the derivative is sufficiently simple, this implicit solver is no moreexpensive
than an explicit scheme. Furthermore the periodic boundary conditions aresolved by an algebraic
matching, which again is trivial because of the linearity of the equations. I have never seen any hint
of an instability due to numerical issues in any of the evolutions I have carriedout, no matter what
the dispersion relation, and no matter what the form of the velocity field of the fluid.

The dispersion relation I chose was given by

F(k) =

[(

k

(1+ k8)
1
8

)

+ .7

(

k

(1+( k
5)8)

1
8

)(

1.−
1.

(1+ k8)
1
8

)]

(

3
4

+
1
4

e−16k2
)

(3.1)

and the velocity was given by

v(x) = 1− .43tanh(50(sin(2πx)+ .6)) (3.2)

where the coordinatex is defined so thatx ≡ x + 1. The spatial derivative of the velocity as a
function of the velocity is, to a very good approximation

dv(x)
dx

= 100π(.8)(.43)

(

1−

(

v(x)−1
.43

)2
)

(3.3)

for |v(x)−1|< .43. (This assumes that cos(2πx) does not vary much over the horizon, which is a
good approximation sincedv

dx ≈ 100 at the horizon.)

I.e., the temperature, proportional todv(x)
dx at v(x) = c changes significantly asc changes.

In Figure 5a-d we have four frames of the real part of the field as we propagate it backward
in time. Since the mode has a wave-number range which encompasses significant changes in the
dispersion relation, we can see the effect of the dispersion on the shapeof the wave-packet when it
was closer to the horizon. Further back in time, the wave has been processed by the horizon, being
squeezed against it, but with the various wave-numbers dropping to the regime in which they were
dragged away from the horizon (backwards in time). Finally in the last framewe have essentially
the whole of the wave-packet contained in the region where the velocity is again a constant. The
imaginary part of the wave-packet behaves very similarly.

Figure 6 displays the squared spectrum (as a function ofω , not k) of the initial wave-packet
of Figure 5a, and in Figure 7, the final wave-packet of Figure 5d. I.e.,Figure 6 is the exiting low
wave-number wave-packet (the one we start with going backward in time).Although the frequency
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Figure 5: The time development of the pulse This is at time 0, time -0.4,-1.4 and -7 in the natural units
were the low frequency velocity of sound is unity. The dottedlines are the black hole and white hole analog
horizons. In the last image, the pulse is (almost) entirely contained in the constant velocity region between
the horizons.

is conserved and thus the same for both, the wave-numbers of Figure 6 are small, while those of
Figure 7 are large.

In Figure 7, the two components are the positive norm part (the larger component) and the
negative norm part of the wave-packet for each frequencyω obtained from the initial (5d) wave-
packet. Note that if there were no thermal effect, this negative norm component would be zero.

Finally in Figure 8, I have calculatedω divided by the logarithm of the ratio of the negative
frequency norm to the positive. This will equal the effective temperatureat that frequency. I have
also plotted the temperatures predicted if we assume thatdv

dx is taken to be that at the horizon cor-
responding to the phase, group and geometric mean of these velocities for each of the frequencies
ω .

At low frequencies the calculated temperature is very noisy. This is to be expected since
at those frequencies the wavelength is of the order the whole space. Thefact that the wave is
not entirely contained in the region where v(x) is constant would be expected to impact these
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Figure 6: The “initial" spectrum at time 0, before propagating it backin time toward the horizon.
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Figure 7: The positive and negative frequency components of the “final” wave (earliest in time) (4d) plotted
as a function of the frequency in the constant velocity part of the space. The ration of negative to positive is
eω/T whereT is the temperature of that mode

frequencies most. Whether the small deviation at high frequencies are dueto similar numerical
problems or are an actual indication that the relevant horizon is not the phase horizon will require
further study.

However at low frequencies, all of the various velocities are the same, and on average the fit
of the numerical temperature of the modes is well given by that common temperature. At higher
frequencies however, the temperature is most closely approximated by the phase velocity.

The comparison between this work and the analytic work in the paper by R. Schuetzhold and
me [8], which uses a very different velocity profile for the fluid near the horizon (v(x) ∝ 1

x ) suggest
that the exact dependence of the temperature of the emitted radiation depends crucially on the form
of the velocity profile. In the analytic case, we found that the temperature is exactly given by the
rate of change of the velocity at the point where the velocity of the fluid equals the geometric mean
of the group and phase velocities of the wave packet far from the horizon. Teasing out the detailed
dependence of the temperature on the the fluid flow and the dispersion relation will be the subject
of further numerical, and if possible analytic, work.
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Figure 8: The effective temperature of the components of the packet (5d) as a function ofω. Also plotted
are the predicted temperatures based on the hypothesis thatthe temperature is that given by thedv

dx of the
fluid flow at the horizon given by the phase velocity, the groupvelocity, and the geometric mean of the
two velocities as determined in the regime where the fluid flowis constant. The noise in the temperature
determined from the wave-packets at low frequencies is probably due to the the wave-packet not quite being
in a region of completely constant velocity. The cause of thedeviation at high frequencies is unknown.
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