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1. Introduction

One of the most mysterious features of black holes is the thermal radiation enttigédu-
ously after a black hole has formedl [1]. This radiation represents sormefsmuantum instability
of the horizon, but exactly what kind of instability is still a mystery. Since the txatpre of a
black hole is a function of the energy (mass), this implies an entropy for Ihlakk an entropy
which is necessary to preserve the second law of thermodynamics wiokrhbles are involved,
but also leads to many mysteries. Where is the radiation created? Is thayeumdamental or is
it, a la Boltzmann, a statistical attribute of the black hole?

An uncomfortable aspect of Hawking’s derivation is that the radiation eméteal timet
after the black hole has formed originates, in his calculations, from thepmsnd fluctuations in
the field at frequencies dfle/*M in the early stages before the black hole has formed. Thus if we
consider the radiation emitted, say, 1 second after a solar mass black sibderhad, this radiation
originates from quantum fluctuations in the vacuum before the black hoieefh with an energy of
el times the mass of the whole universe. For such quantum fluctuations, d¢kiey dre vacuum
fluctuations, we do not expect a simple quantum field theory in a fixed bawkd spacetime (the
arena in which Hawking did his calculation) to be an adequate approximation.

This has been noticed since shortly after the original paper, but sinétathking's results are
so appealing, it was felt that the calculation, though obviously unphyisicgtail, was surely right
in principle. In 1981 [[2], | noticed that sound waves in a backgrouratdtional flow where the
fluid velocities exceeded the velocity of sound were mathematically exaciggaflscalar fields in
a black hole background spacetime, at least in the hydrodynamic apptmamiurthermore the
gquantization of those sound waves (phonons) corresponded exatily tpiantization of a scalar
field theory in a background black hole spacetime. Thus one expects and,naively carries out
the analog of Hawking’s calculation, one gets that the horizon would emitdsguanta with some
temperature. In this sonic case, that temperature is given by

1 d(c(x)2—v(x)?)

T= 471C(X) dx

(1.1)

V(Xx)=c(x)

wherec(x) is the (perhaps spatially dependent) velocity of sound, and the expréssialuated at
the point where the velocity of the fluid equals the velocity of sound. Thigsoralog of a black
hole | called a dumb hole- from the phrase “deaf and dumb”- since suctists were incapable
of emitting sound. And the calculation of this temperature suffers from the sxpenential
dependence with time of the initial vacuum fluctuations. However, unlike the fa the black
hole, we know that hydrodynamics breaks down at short wavelengiliisid has a natural high
frequency and wave-number cutoff— at a minimum at the inter-atomic spdangsuch a system
has no ultra-high frequency problem.

After Jacobson[]4] pointed out that the dominant effect of the inter-at@pécing was to
change the dispersion relation (relation between frequency and wemben) away from linear,
| [f] was able to numerically model the modes in such a background flowshad, through
the positive and negative norm mixing of the modes, that these dumb holéd emii thermal
radiation even though those exponentially high frequencies were abBeathermal effect was
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robust against high frequency changes in the theory. For a revighedftatus of the use of such
dumb holes to understand black hole evaporation, see for example Carms@et al. [[6]

These dumb holes also present us with the opportunity of asking wherartidgs are actu-
ally created. Let us imagine a fluid containing sound waves with a dispeedgtion as in Figure
1 and 2. This dispersion relation is such that there exists some common grdphase velocity
at the lowest frequencies, &s— 0. The dispersion relation is crafted so that at intermediate fre-
guencies, the group and phase velocities are again equal, but at a camlmocity that is smaller
than the low frequency one is. Finally at the highest wave-numbers, thergisn relation drops
so that the group velocity goes to zero. While such a dispersion relation enastificial, it does
allow us to ask which of the various velocities determine the temperature of theceraitiation.
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Figurel: The dispersion relation as a function of k asad At high wave-numbers the relation flattens out,
but this regime is never probed by the wave-packets.
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Figure 2. The central part of the dispersion relation of Figure 1. udeld are dotted lines with slope of 1,
0.75and 0.5.

We now design the background flow of the fluid so that the derivativeeo¥/éhocity, i.e., the
temperature, differs at the different possible horizons (the placesewhe fluid velocity equals
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the group, or phase velocity at different frequencies). l.e., at thrg pere the fluid flow equals
that intermediate common group and phase velocity, the background floversttakave a smaller
derivative than it has at the point in the flow where the velocity equals thevibye-number group
and phase velocity. To be definite, | choose the fluid flow so that the tihvatiee is given by

dv v—1\2

dx O (1— (Av) ) (1.2)
whereAv is half the difference between the maximum (inside the horizons) and minimuside)
of the velocity of the fluid, and the velocity of sound (at the lowest waverrers) has been taken
equal to 1.

Let us follow the evolution of a wave-packet which eventually becomesmtievave-packet
emitted by the dumb hole. At early times it is high frequency packet whosg@gelacity is much
smaller than the fluid flow. It is an outgoing packet, but because of its lowpgvelocity it is
dragged by the fluid flow toward the horizon. Nearing the horizon, it iscttesl by the differential
flow of the fluid, and its wave number decreases. It hugs the horizonaits-wumber steadily
decreasing until finally its wave-length is of the order of the size of the duah, the group
velocity is greater than the velocity of the fluid, and it escapes from the Baliewhich horizon?
Is it the point where the velocity of the fluid equals the phase, the grouggroe other velocity of
the wave? And, since the phase and group velocities depend on thenaaneer, at which of the
ever changing wave-numbers is it the phase/group/other velocity of thketpahich determines
the horizon location?

Since the fluid flow has a changing velocity and a changing derivativeelotity near the
v =1 horizon, each of those possible horizons has a different rate ahsign — of stretching the
wave-packet. Each in principle therefore has a different temperaivhéch of the temperatures
determines the temperature of the escaping radiation? Is it an averagéehef iinperatures that
the wave-packet has encountered at the different horizons it habefee escaping? Is it the
horizon with its temperature (proportional %) where the high frequency vacuum fluctuations
first encounter the horizon and begin to be red-shifted? Is it some intextedubrizon that the
wave-packet encounters during its red-shifting? Or is it the horizothimwave when it finally
leaves the horizon? If it is the temperature at the lowest frequenciestivaerave finally escapes
the dumb hole, then one can argue that the properties of the horizon, ddrfie hole, at higher
frequencies, are irrelevant. The independence of the temperature pridgh horizons the wave-
packet met would then indicate that they had no effect on the particle argat®. The thermal
particles are created at those lowest frequencies. The particle crpativess is definitely a low-
frequency process.

If the group and phase velocities change, they cannot be equal tood#zmhat all wave-
numbers. If

dw
dk Kk

thenw = vk for some constant value of and the group and phase velocities are constant.
Thus the lowest wave-number wave-packets escaping the hole muggdrae¢hough a fre-

guency regime where the group and phase velocities were not equahédserfrequencies, what

(1.3)
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place in the fluid flow corresponds to the horizon? Is the effective homtnich determines the
temperature of the emitted radiation located where the group velocity equalsithedlocity,
where the phase velocity equals the fluid velocity, or some other place entirely

2. Numerical model

In order to investigate this | used the same numerical procedure outlined i898yphper([5].
The fluid flow is assumed to be cyclic —i.e., the flow and all modes are assumeasdgériodic
boundary conditions. Thus the flow which establishes a black hole harizmme place, must also
establish a white hole horizon (a horizon out of which modes can flow, tutihich no mode can
penetrate.) Such cyclic flows are known to have instabilities, but | never ttee calculations far
enough to trigger those instabilitidg [7] (which arise from modes which ciremgate the cyclic
system, and interfere with themselves or bounce back and forth betweathiteeand black hole
horizons.) The procedure | follow is to start with a low wave number waeket entirely confined
to the region in which the fluid flow is constant. That packet is taken to be tgoiog packet (i.e.,
travelling away from the black hole horizon) and to have a sufficiently loweagumber that its
group velocity is larger than the fluid velocity in the region of the packet. Theons are now
solved backwards in time. At earlier times, that packet came from near timoho As we go
further back in time it is squeezed up against the horizon, and its waveardmebomes higher
and higher. Eventually, the wave-number becomes sufficiently high thatddes making up the
packet have a group velocity much less than the fluid flow velocity. Going fwémer back in
time, that packet now moves away from the horizon (corresponding tortbdé being dragged
toward the horizon by the fluid flow if one looks at the mode forward in time) unid again
entirely contained in the region again where the velocity of the fluid is a canstan

The equation obeyed by these modes is assumed to be of the form

(6 — 3kv(x)) (G —V(X)9) (t,x) + F(id) p(t,x) = 0 (2.1)

where all derivatives operate on everything to their right in a termgard+F (K) is the dispersion
relation of the wave if the background velocity is zero. The functionahféor F that | take
has both the group%E) and phase velocityftiﬁ) equal to 1 at the lowest frequencies and wave
numbers. There is then a transition to a regime where the group and phasigesare again
almost equal with a value of both 0.75. Finally, the dispersion relation thensraakansition to

a regime where the slope is 0.5 and then at very large wave-numbers @vhiokver achieved in
the evolution of the wave-packet), the group velocity drops to zero.

Note that the equation is time independent, ant thus conserved. In principle, one could
solve this by separation of variables, and have a single ordinary diffarequation irnx, but for
genericF it would be of infinite order. Thus the resulting equatiorxiis in general impossible
to solve, especially for the dispersion relation | use. Corley and Jacof@psolved this ODE
numerically for a simple dispersion relation whétéwas a low order (quadratic) polynomial in
Ox.

In a regime in whichv(x) is a constant, there is a definite relation betwegrthe temporal
frequency, and the wave number. l.e., if the wave is entirely in a regime whxg is constant,
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w andk obey
(w—vk)? = F?(Kk) (2.2)

Thus in such a regime one can determingvithout solving the equations for all time and taking
the temporal Fourier transform.
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Figure 3: The group and phase velocity of the dispersion relation asation of the frequency in the
constant part of the velocity profile. Note that as expedtedohase velocity is monotonic, while the group
velocity is not. These curves include the parts where thegemd phase velocities are both 1 and both near

0.75

In Figure 3, the group and phase velocities as seen by a stationaryetfeera flowing fluid,
%—‘Q’ +vand¥ + v are plotted as a function @b for the particular dispersion relation | chose, in the
low velocity regime for the fluid.

Figure 4. A blow-up by a factor of 100 of of the wave at timhe= —2 showing the low frequency back-
scatter wave coming off the horizon.

Let me define the wave as a left travelling wave (away from the horizothaahe relation
betweenw andk in the low velocity regime is

w—vk = +F(K). (2.3)
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A right travelling wave would have the opposite signFofn the constant region. The packets
| start the calculation with are left travellers. What is somewhat surprizirtgaisthe direction

of travel of these waves seems to be almost conserved. There is sorercevid the numerical
calculations that left movers are turned into right movers by the equationtadmio a very small

degree. In Figure 4 we have the plot at the time -2.0. with the y axis expdndadactor of

100. We see the long wavelength train which is a right-moving wave of reljatameg wavelength.

This appears to have been generated as the left-going pulse shiftedreguericy at the horizon.
The creation of such right-movers here corresponds to the reflectontfre region of changing
velocity near the dumb hole horizon. This corresponds to the reflectiontfie curvature of near
a black hole, leading to a non-zero albedo for waves incident on a btdek Bome insight into
why this occurs can be gleaned if we compare the equation of motion | used with

(6 — 0xv(X) +F (0x)) (& — v(X)dx — F(dx)) @(t,x) = 0 (2.4)

(where derivatives operate on everything to their right). This equaiftersifrom the above by a
term

— (F(0x)V(X)0x — IV(X)F (0x)) o(t,X) (2.5)

where again all derivatives operate on everything to their right. Thisriszeoo only ifF (d) is not
linear indy, and such that the higher derivativesvoX) are non-negligible at those wave numbers.
l.e., one would expect the scattering of outgoing into ingoing waves to be samdllhumerically
they are. However, that small scattering does seem to upset the calcufatintemperature at
the lowest frequencies.

In order to determine the particle creation rate, one starts (at late time) wittsaivpaorm®
wave-packet. In this context this will be a wave-packet with low wave-ramehtirely contained
in the regime where(x) = congtant. Furthermore, the wave is assumed to be suchahatk =
—F (k) and such thato > 0. These modes have positive norm where the norm is defined via the
conserved current for the scalar field given by

@0 = 5 [ 0 (4L a0 .

One now evolves the system backwards in time until the wave-packet is exgiitialy con-
tained within a regions whergx) is a constant. One can again determini@ terms ofk. However,
one will now discover that the constamtmodes which make up the mode are not entirely positive
norm. There will be components with< 0, which can easily be seen to also have negative norm.
This negative norm component is a measure of how many particles woulddeged by the hole
in the “final mode" in the quantum regime. l.e., itis directly related to the Bogoligbefficients
of the transformation from initial to final waves.

Note that sincew is conserved, one can take any initial wave-packet which containsaa bro
range of values ofo and determine the Bogoliubov coefficient at each frequency containedtin th
packet.

At each frequency, since the evolution of the field is linear, the density mat@aussian, and
thus is thermal. The ratio between the positive and negative norm compaeaish frequency is
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thus a measure of the temperature of that mode. In particular the ratio ofrthehthe negative to
positive norm components is just&* whereT is the temperature corresponding to this particular
mode.

3. Numerical technique

As in my previous papel]5], the problem is solved by a combination of finiferéificing
and Fourier transform. At each time the the term witis evaluated in the Fourier regime, using
fast Fourier transforms and multiplication 1B (k) which is defined to be real. The convective
derivatives on the other had are solved by an implicit solver scheme toeestbility of the
evolution. Since the derivative is sufficiently simple, this implicit solver is ho nexgensive
than an explicit scheme. Furthermore the periodic boundary conditiosekel by an algebraic
matching, which again is trivial because of the linearity of the equationwd hever seen any hint
of an instability due to numerical issues in any of the evolutions | have castigcho matter what
the dispersion relation, and no matter what the form of the velocity field of ui fl

The dispersion relation | chose was given by

K k 1 3 1 a0

and the velocity was given by

F(k) =

v(x) = 1—.43tanh(50(sin(2mx) + .6)) (3.2)

where the coordinate is defined so thak = x+ 1. The spatial derivative of the velocity as a
function of the velocity is, to a very good approximation

dv(x) v(x)—1 2
dx =100r1(.8)(.43) <1—( 3 ) ) (3.3)

for |v(x) — 1| < .43. (This assumes that d@s1x) does not vary much over the horizon, which is a
good approximation sincﬁ ~ 100 at the horizon.)

l.e., the temperature, proportionaliéf—) atv(x) = c changes significantly aschanges.

In Figure 5a-d we have four frames of the real part of the field as wpayate it backward
in time. Since the mode has a wave-number range which encompasses sigolferages in the
dispersion relation, we can see the effect of the dispersion on the shtq@ewave-packet when it
was closer to the horizon. Further back in time, the wave has been pedd®sthe horizon, being
squeezed against it, but with the various wave-numbers dropping togineereé which they were
dragged away from the horizon (backwards in time). Finally in the last frambave essentially
the whole of the wave-packet contained in the region where the velocityaia agconstant. The
imaginary part of the wave-packet behaves very similarly.

Figure 6 displays the squared spectrum (as a functiam, afotk) of the initial wave-packet
of Figure 5a, and in Figure 7, the final wave-packet of Figure 5d. Higure 6 is the exiting low
wave-number wave-packet (the one we start with going backward in tisttépugh the frequency
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Figure5: The time development of the pulse This is at time 0, time -4 and -7 in the natural units
were the low frequency velocity of sound is unity. The dotteds are the black hole and white hole analog
horizons. In the last image, the pulse is (almost) entirelytained in the constant velocity region between
the horizons.

is conserved and thus the same for both, the wave-numbers of Figueesénatl, while those of
Figure 7 are large.

In Figure 7, the two components are the positive norm part (the largerawenp and the
negative norm part of the wave-packet for each frequenoptained from the initial (5d) wave-
packet. Note that if there were no thermal effect, this negative nhorm coempavould be zero.

Finally in Figure 8, | have calculate@ divided by the logarithm of the ratio of the negative
frequency norm to the positive. This will equal the effective temperattitkat frequency. | have
also plotted the temperatures predicted if we assumeggﬁattaken to be that at the horizon cor-
responding to the phase, group and geometric mean of these velocitieelfioofehe frequencies
w.

At low frequencies the calculated temperature is very noisy. This is to becteg since
at those frequencies the wavelength is of the order the whole spacefadtthat the wave is
not entirely contained in the region where v(x) is constant would be ¢xgdo impact these
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Figure6: The “initial" spectrum at time 0, before propagating it backime toward the horizon.
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Figure7: The positive and negative frequency components of the "fimabe (earliest in time) (4d) plotted
as a function of the frequency in the constant velocity patthe space. The ration of negative to positive is
e“/T whereT is the temperature of that mode

frequencies most. Whether the small deviation at high frequencies an® dimilar numerical
problems or are an actual indication that the relevant horizon is not thee fwaizon will require
further study.

However at low frequencies, all of the various velocities are the sandepmiaverage the fit
of the numerical temperature of the modes is well given by that common temgeratuhigher
frequencies however, the temperature is most closely approximated blyake pelocity.

The comparison between this work and the analytic work in the paper byrRegathold and
me [8], which uses a very different velocity profile for the fluid near thgzon (/(x) O )—1() suggest
that the exact dependence of the temperature of the emitted radiation depeacielly on the form
of the velocity profile. In the analytic case, we found that the temperaturale given by the
rate of change of the velocity at the point where the velocity of the fluidledlia geometric mean
of the group and phase velocities of the wave packet far from the hmoriaasing out the detailed
dependence of the temperature on the the fluid flow and the dispersionmreldtibe the subject
of further numerical, and if possible analytic, work.

10
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Figure 8: The effective temperature of the components of the packhtg® a function otv. Also plotted
are the predicted temperatures based on the hypothesithéhsgmperature is that given by tI§§ of the
fluid flow at the horizon given by the phase velocity, the greejocity, and the geometric mean of the
two velocities as determined in the regime where the fluid flowonstant. The noise in the temperature
determined from the wave-packets at low frequencies isgiigldue to the the wave-packet not quite being
in a region of completely constant velocity. The cause ofddngation at high frequencies is unknown.
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