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The Myers-Pospelov (MP) model is an effective field theory (EFT), including dimension five op-

erators, which describes the phenomenology of active Lorentz invariance violation produced by a

preferred reference frame. We concentrate here in the case of the modified electrodynamics. The

point of view taken in this work is that the Lorentz violating part of the action in the MP model,

which includes higher order time derivative (HOTD) operators, is to be considered as a perturba-

tion over the dynamics described by standard Electrodynamics, particularly in the quantum case.

HOTD theories, besides incorporating additional degrees of freedom, suffer from well known dif-

ficulties in their quantization, among which one finds Hamiltonians which are not bounded from

below. Thus, in order to cope with these challenges it will be necessary to deal with a modified

perturbation theory which is well described in the literature. We apply such methods to this spe-

cific model providing a quantization of the free sector of the theory by identifying the modified

normal mode expansions of the fields together with the modified propagators and the interaction

terms. The calculation of interacting processes, together with radiative corrections, is beyond the

scope of the present article and will be deferred for future publications.
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1. Introduction

The MP model [1] is an EFT theory that incorporates scalars, fermions and photons in an
observer (active) Lorentz violating theory using dimension five operators together with the presence
of a fixed direction selecting a preferred frame. It has recently been generalized to a non-abelian
model including interactions arising from the fields associated to the Standard Model [2], thus
providing a dimension-five-operator generalization of the original Standard Model Extension [3].

In this work we will concentrate upon the simpler version of Ref.[1], particularly upon the
proposed modified electrodynamics. We present here the first steps to our final goal, which is to
provide a quantum version of MP electrodynamics considered as a perturbation of standard QED,
in the precise sense that when making zero the parameters encoding the corrections we must re-
cover the well known results for any physical process in Lorentz covariant QED. This requirement
is motivated by the fact that all experimental and observational evidence point to negligible Lorentz
invariance violation at standard model energies. The amazingly precise experimental predictions of
standard QED can be obtained as the result of perturbative calculations, which now will require the
incorporation of the extra perturbation arising from LIV into the scheme. An additional challenge
arises because the presence of dimension five operators encoding the corrections to QED in the MP
model make the theory of the HOTD type. At least at the perturbative level, it is well known that
HOTD theories, besides the obvious property of having additional degrees of freedom with respect
to the lower order ones, give rise to Hamiltonians which are not positive definite, irrespectively of
the interaction terms [4, 5]. In fact, a perturbation of electrodynamics should not introduce addi-
tional degrees of freedom, so that a careful strategy is required to define an adequate perturbative
procedure in the LIV parameters. Fortunately, a systematic approach to carry out this task, which
also provides a positive definite zeroth order Hamiltonian, already exists in the literature [7, 8] and
here we adhere to it.

In view of the above considerations we will proceed in the following way to define the quantum
field theory extension of the MP model: (i) as usual, our starting point will be the classical version
of it given in Ref.[1] and which has been thoroughly studied in relation to synchrotron radiation in
Refs. [6]. (ii) next we apply the procedure of Ref.[8] to the classical HOTD MP model and reduce
it to a modified effective theory of the same time derivative character as classical electrodynamics.
The procedure leads to field redefinitions plus additional contributions to the interactions. (iii)
finally we take this resulting classical theory as the correct starting point for quantization, which we
carry along the standard lines. The resulting quantum theory provides the basis for the calculation
of interacting processes using the standard perturbative scheme of quantum field theory (QFT). In
this sense it is clear that we are not producing a quantum version of the full MP model, but only
one which is adapted to our basic requirement of describing the LIV corrections as perturbations
to QED.

Perhaps we should emphasize at this stage that we are dealing with two different classes of
perturbations: the first one concerns only the LIV parameters, occurs at the classical level and
serves to define the correct starting point for quantization. Once the resulting theory is quantized,
the usual QFT interacting processes can be calculated, corresponding to the second class of pertur-
bations. Both approximations should be made consistent when predicting a result to a given order
in any of the LIV parameters.
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Furthermore, in this work we only deal with the calculation of the free propagators, which
nevertheless incorporate modified dispersion relations to lowest order in the LIV parameters. In
other words, we identify the corresponding free propagating excitations which will subsequently
subjected to interactions. The calculation of interacting processes either at the tree or at the one
loop level are deferred to future publications. Of particular interest to us will be the calculation of
self-energies which can be used as first indications of the fine-tuning problems arising in some LIV
theories [9, 10].

2. The MP electrodynamics

The corresponding free field Lagrangian densities are given by

Lphoton = −1
4

FµνFµν +
ξ
M

Ei∂0Bi , (2.1)

L f ermion = Ψ̄iγµ (
∂µ −m

)
Ψ+

1
M

Ψ̄γ0(η1 +η2γ5)∂ 2
0 Ψ, (2.2)

in the particular frame where the Lorentz symmetry is broken in the directionnµ = (1,0) and
in standard notation with metric(1,−1,−1,−1). We interpret the scaleM, together with the di-
mensionless parametersξ ,η1 andη2, as the effective low energy imprints upon standard particle
dynamics produced by a fundamental quantum gravity theory, which has induced an spontaneous
LIV characterized by the vacuum expectation valuenµ . The choiceM = MPlanck leads to the ob-
servational/experimental bounds|ξ | < 10−7 and|η± = η1±η2| < 10−5 [11]. In the limit of such
parameters going to zero we demand that the standard Lorentz covariant quantum results for elec-
trodynamics are recovered. After some basic features of the theory are revealed we present a more
detailed discussion of the relevant energy scales that define the effective model in the last section.

In order to assess the real character of a HOTD contribution it is convenient to look at the
contribution of the Lorentz violating terms to the equations of motion. The fermion modification
will add a second-order time derivative to the standard first-order equation of motion. Additional
degrees of freedom will appear in this case. On the contrary, the photon contribution only incorpo-
rates a modification to the standard second-order term in electrodynamics and no additional degrees
of freedom are present. Nevertheless, such modifications will still require some field redefinitions
in order to exhibit a positive definite Hamiltonian consistent with the field operators commutation
relations.

3. The perturbative expansion

The general method for dealing with the canonical description of HOTD theories was given a
long time ago in Ref. [12]. In order to highlight some general features of these theories we briefly
review their basic properties in the context of a scalar field theory satisfying the non-degeneracy
condition

(
∂ 2L

∂φ (k)∂φ (k)

)
6= 0, where the fields depend upon the space-time coordinates. The general-

izations incorporating spinor and vector fields they have been analyzed in Refs. [7], [13].
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If the highest time derivative in the Lagrangian densityL = L (φ(t,x), ...,φ (k)(t,x)), is of
orderk, with the notation1

φ (k)(t,x) =
∂ kφ(t,x)

∂ tk , (3.1)

the corresponding phase space will be of dimension2k per space point, been characterized byk
fields: Q0 = φ(t,x), Q1 = φ (1)(t,x), ...., Qk−1 = φ (k−1)(t,x) together withk momenta

Pi(t,x) =
∂L

∂φ (i+1) +
k−i−1

∑
j=1

(
− ∂

∂ t

) j ∂L

∂φ ( j+1) , i = 0, . . . ,(k−1). (3.2)

Here and in the sequel, as far as no confusion arises, we avoid writing the explicit space-time
dependence in the fields. The equation of motion forφ will be of order2k in the time derivatives,
requiring the fixing of2k initial conditions, which is consistent with the existence of2k degrees of
freedom phase space. The Hamiltonian is

H =
∫

d3x

(
k−1

∑
i=0

PiQi− L (Q0, . . . ,Qk−1, φ (k)(Pk−1,Q0, ...,Qk−1))

)
, (3.3)

where we have used the non-degeneracy condition which implies that we can solveφ (k) as a func-
tion of Q0, ...,Qk−1,Pk−1. The above expression is linear in the momentaPi , i = 0, ...,k−2, thus
making the Hamiltonian (3.3) unbounded from below, independently of the interaction terms in-
cluded in the Lagrangian.

Since we are interested in dealing with HOTD corrections in the action as perturbations upon
standard theories we must rely on a procedure which (i) retains the original number of degrees
of freedom and (ii) produce free Hamiltonians bounded from below as adequate starting points
for quantization. Such a method has been already developed in Refs. [7, 8] and we present here
a brief summary of it adapted to the case of a scalar field theory. In order to point out some
its basic features let us consider the simplest framework of a non-covariant Lagrangian density,
analogous to those described in Eqs. (2.1), (2.2), depending upon accelerations and where the
HOTD contribution is only present as a perturbation characterized by the small parameterg

L (φ ,∂µφ , φ̈) = L (φ ,∂µφ)+
1
2

gφ̈2. (3.4)

In this case the quantitiesφ , φ̇ play the role of coordinate fields. The standard procedure of extrem-
izing the action leads to

δS = δ
∫

d4xL (φ ,∂µφ , φ̈) =
∫

d4x ∂µ

[(
∂L

∂∂µφ
−∂ν

(
∂L

∂∂µ∂νφ

))
δφ

+
∂L

∂∂µ∂νφ
δ∂νφ

]
+

∫
d4x E([φ ])δφ , (3.5)

where

E ([φ ]) = ∂µ∂ν

(
∂L

∂∂µ∂νφ

)
−∂µ

(
∂L

∂∂µφ

)
+

∂L

∂φ
= 0. (3.6)

1For the lower order time derivatives we might use also the standard dots notation
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The first term in the right hand side of Eq. (3.6) gives the fourth order time derivative contribution
φ (4)(t,x) to the equation of motion. The space-time dependent momenta, associated toφ and φ̇
respectively, can be directly read off from the surface boundary term in Eq. (3.5)

P0 =
∂L

∂ φ̇
− ∂

∂ t

(
∂L

∂ φ̈

)
, P1 =

∂L

∂ φ̈
, (3.7)

in accordance with the general expression in Eq. (3.2). From the simple form assumed for the
HTOD term, which satisfies the non-degeneracy condition, it is clear that both velocities can be
solved in terms of the momenta:̈φ can be expressed in terms ofP1, and φ (3) in terms ofP0.
Nevertheless, notice that both substitutions carry the non-analytical factor1/g. This is precisely
what makes non-trivial a perturbative expansion aroundg = 0.

The full HamiltonianH and symplectic formΩ are defined according to the Ostrogradski
procedure as

H =
∫

d3x
(
P0φ̇ +P1φ̈ −L

)
, Ω =

∫
d3x d3y

(
dP0(t,x)∧dφ(t,y)+dP1(t,x)∧dφ̇(t,y)

)
.

(3.8)
The dangerous contributions to the Hamiltonian arise from the non-analytic termP2

1/2g together
with the unbounded pieceP0 φ̇ .

Let us summarize now the general perturbative procedure for the non-degenerate case accord-
ing to the method in Ref.[8], in the framework of a system having a Lagrangian density of the
form

L = L0(φ , ∂µφ)+gL1(φ , ∂µφ , φ (2), . . . , φ (n)), (3.9)

whereg is a small parameter. The steps are the following: (i) in order to obtain the appropriate
Hamiltonian to ordergk, one starts by iteratively solving the equations of motion to orderg(k−1).
(ii) next express all time derivativesφ (k)(t,x) for k > 2 in terms of the lowest time-derivative fields
describing the unperturbed system, which areφ(t,x) andφ̇(t,x) in our example. This will introduce
further contributions in powers of the perturbation parameters which need to be maintained only up
to the required order. (iii) then rewrite the Hamiltonian together with the symplectic form obtained
from the Ostrogradski method by substituting the momenta together with allφ (k)(t,x), k > 2 in
terms of these basic variables.

H = H (φ , φ̇ ,∇φ), Ω =
∫

d3x d3y ω(φ(t,x), φ̇(t,y))dφ̇(t,y) ∧ dφ(t,x), (3.10)

from where we can read the bracket{φ(t,x) , φ̇(t,y)}. (iv) finally find an invertible change of
variablesφ(t,x), φ̇(t,x)→ Q(φ , φ̇ , ...), P(φ , φ̇ , ...) in such a way that the corresponding Poisson
bracket{Q(t,x) , P(t,y)} is canonical to the order considered. That is to say

δ 3(x−y)+O(gk+1) = {Q(t,x) , P(t,y)}
=

∫
d3z d3z′

(
δQ(t,x)
δφ(t,z)

δP(t,y)
δ φ̇(t,z′)

− δQ(t,x)
δ φ̇(t,z′)

δP(t,y)
δφ(t,z)

)
{φ(t,z) , φ̇(t,z′)}. (3.11)

At last, the Hamiltonian densityH̃ (Q,P, . . .) = H (φ(Q,P, . . .) , φ̇(Q,P, . . .)) together with the
Poisson bracket{Q(t,x),P(t,y)} = δ 3(x− y) define the physical approximation of the system
to the order considered. This Hamiltonian will be bounded from below provided the initial one
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obtained fromL0 is. The effective Lagrangian density is given bỹL (Q,Q̇, . . .) = PQ̇− H̃ and
the quantization is straightforward since it is first order.

A proof of self-consistency to all orders, in a mechanical setting2, is provided in Ref.[8]. It
consists in showing that to each order in the expansion parameter, the Lagrangian constructed
according to the summary described in the above paragraph reproduces exactly the corresponding
equations obtained by the iteration procedure stating from the exact HOTD ones.

An illuminating example of the relevance of the above procedure to our case is also given in
Ref. [8]. The authors consider a system of two one-dimensional oscillators coupled in the presence
of a constant gravitational field. Each oscillator has natural free frequenciesΩ0 =

√
K/M and

ω0 =
√

k/m, respectively. The full normal modes frequenciesΩ andω can be exactly calculated.
On the other hand, the equations of motion consisting in two coupled second order differential
equations can be uncoupled through a fourth order differential equation for one coordinate, which
can be obtained from an acceleration dependent Lagrangian. Next, they look at the situation in
terms of a perturbative scheme starting from this acceleration dependent Lagrangian. The expan-
sion parameter is taken to beg = k/K ¿ 1 and for the sake of the discussion the two masses are
considered of the same order, i.e.m∼M. When probing energies of the order ofω0 one verifies
that the acceleration corrections in the Lagrangian become negligible with respect to the velocity
and coordinate dependents ones, which coefficients depend upon all the parameters. The most
immediate possibility to proceed along the lines of maintaining the original number of degrees of
freedomx, ẋ, is to simply neglect the acceleration term and compute the corrections toω to first
order ing. Nevertheless, this result does not coincide with the first order expansion of the exact
frequencyω to that order. On the other hand, the application of the modified perturbative method
proposed in [8] does indeed leads to the correct expression to that order. Moreover, in this simple
case, the corrections can be calculated to all orders ing and the sum of this perturbation series can
also be performed, leading to the exact expression forω. The high frequency modeΩ, which is
non-analytical when written in terms of the parameterg, is not seen by the procedure, meaning
that the results are valid only for energies much lower thanΩ. One could summarize the above
description by saying that the physical meaning of reducing the enlarged original configuration
(x, ẋ) - velocity (ẍ,

...
x) space to that generated byx andẋ in the proposed perturbative formulation

is to allow the calculation of further corrections to the excitations of the low energy modes already
present in the zeroth order system, in a way consistent with the exact evolution. We refer the reader
to the original paper for further details.

4. The perturbative expansion in the Myers-Pospelov model

Here we describe the main ingredients and results of the application of the method described
in the previous section to the quantization of the free sector in MP electrodynamics. Our general
strategy will be the following: (i) since the fermions acquire corrections of the HOTD type, we
start by constructing the corresponding effective Lagrangian and Hamiltonian densities to a desired
order ing= 1/M. Then we quantize this effective theory and calculate the modified free propagator.
(ii) next we introduce the photons via minimal coupling in this effective fermion Lagrangian density

2Field theory in1+0 dimensions
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and also add the contributions of Eq. (2.1), identifying the resulting free and interaction terms. (iii)
subsequently we find the correct effective Hamiltonian formulation for the free photon field and
proceed to its quantization, obtaining also the modified propagator. In both cases the normal modes
of the free sector correspond to particles with propagation properties which are different from the
usual ones described by the limitη1/M,η2/M → 0.

4.1 The fermionic sector

Here we consider corrections to orderg = 1/M > 0 and start from the HOTD Lagrangian
density

L = ψ̄(iγµ−→∂µ −m)ψ +gψ̄Σ0ψ̈, Σ0 = γ0(η1 +η2γ5) , (4.1)

which produces the equation of motion

ψ̇ =−→α ψ + igχψ̈, −→α =−γ0(γ i−→∂i + im). (4.2)

In the approximationψ̇ = −→α ψ, ψ̈ = −→α ψ̇, the canonical momenta, the Hamiltonian density, and
the symplectic form, respectively, are

Π0ψ = ψ̄ iγ0 +gψ̄←−α Σ0, Π1ψ = gψ̄Σ0, Π0ψ̄ = 0 = Π1ψ̄ , (4.3)

H = −iψ̄γk∂kψ +mψ̄ψ +gψ̄←−α Σ0
−→α ψ, (4.4)

Ω =
∫

d3x
{

idψ†[
1− igγ0←−α Σ0− igγ0Σ0

−→α ]∧dψ
}

. (4.5)

The required change of variablesψ → ψ̃ to recover the standard symplectic structure

{ψ̃A(t,x), ψ̃†
B(t,y)}= δABδ 3(x−y), (4.6)

where the labelsA,B = 1,2,3,4 denote the four-spinor components, is

ψ̃ = (1− igγ0Σ0
−→α )ψ, ¯̃ψ = ψ̄ (1− ig←−α Σ0γ0). (4.7)

This leads to the following effective Lagrangian and Hamiltonian densities

L̃ = ¯̃ψ
(
iγµ∂µ −m

)
ψ̃ +g ¯̃ψγ0

(−→α )
γ0Σ0

(−→α )
ψ̃, (4.8)

H̃ = ψ̃†[−i−→α ψ̃−g(γ0
−→α χ−→α )ψ̃

]
= ψ̃†i

∂ψ̃
∂ t

. (4.9)

Next we proceed to quantization by introducing fermionic creation (annihilation) operators for par-
ticlesb†

λ (k),(bλ (k)) and for antiparticlesd†
λ (k),(dλ (k)), with standard anticommutation relations.

The labelλ =±1 denotes the helicity quantum number. The normal modes (physically propagat-
ing particles) corresponding to the full Dirac equation derived from Eq.(4.8) are characterized by
positive energiesEλ

u (k),Eλ
v (k) according to the modified dispersion relations

Eλ
u (k) = E0 +g(η1E2

0 +λ |k|η2E0), Eλ
v (k) = E0−g(η1E2

0 +λ |k|η2E0), (4.10)

where the notation isE0 = +
√

k2 +m2. Here we can appreciate one indication that we are dealing
with an EFT: it is clear that for any choice of the parametersη1,η2, in the high momentum limit
there will be at least one value of the above energies which will be negative, thus producing a

7
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Hamiltonian which is not positive-definite. To avoid this possibility we must impose the restriction
|k|< M/|η1 +λ η2|. Further discussion of this issue is given in the last section.

In terms of the above normal modes, the fermionic field can be expanded as

ψ̃A(x) =
∫

d3k√
(2π)3 ∑

λ=±

√
m

Eλ
u (k)

bλ (k)UAλ (k)e−ikλ
u ·x

+
∫

d3k√
(2π)3 ∑

λ=±

√
m

Eλ
v (k)

d†
λ (k)VAλ (k)eikλ

v ·x. (4.11)

Here the notation iskλ
u · x = Eλ

u t− k · x and analogouslykλ
v · x = Eλ

v t− k · x. Also, UAλ (k) and
VAλ (k) are the corresponding eigenspinors of the one particle Hamiltonian associated to (4.9). Such
spinors can be explicitly written to orderg and satisfy the following properties

Vλ (g,k) = γ5Uλ (−g,k), V†
λ (k)Uλ ′(−k) = 0, (4.12)

U†
λ (k)Uλ ′(k) = δ λλ ′ E

λ
u (k)
m

, V†
λ (k)Vλ ′(k) = δ λλ ′ E

λ
v (k)
m

, (4.13)

m

Eλ
u

Uλ (k)Ūλ (k) =
1

2E0
(γ0E0− γ ·k +m− igmη2γ5α−k)Pλ (4.14)

m

Eλ
v

Vλ (k)V̄λ (k) =
1

2E0
(γ0E0− γ ·k−m+ igmη2γ5αk)Pλ . (4.15)

Hereαk is the momentum representation of the operator−→α defined in Eq. (4.2) andPλ is the
helicity projector

Pλ =
1
2

(
I +λ

Σ ·k
|k|

)
, (4.16)

whereΣ is the spin operator.
Using the field expansion (4.11) together with the required properties from Eqs. (4.12), (4.13),

the Hamiltonian, the momentum and the charge operators have the expected form in terms of the
number operatorsb†

λ (k)bλ (k) and d†
λ (k)dλ (k). Our final task in this subsection is to write the

fermion propagator
iSAB(x−y) = 〈0|T(ψA(x) ψ̄B(y))|0〉, (4.17)

which, in momentum space, is given by

S(k0,~k) = ∑
λ=±

[
1

(k0−Eλ
u + iε)

{
m

Eλ
u

Uλ (~k)Ūλ (~k)
}

+
1

(k0 +Eλ
v − iε)

{
m

Eλ
v

Vλ (−~k)V̄λ (−~k)
}]

.

(4.18)

Let us emphasize that the terms in curly brackets appearing in the above expression have been
explicitly calculated in Eqs. (4.14) and (4.15). Also the poles ink0 appear as exact functions of the
normal mode energies to the order considered.

4.2 The photon sector

In order to include photon fieldAµ we perform the minimal substitution∂µ → (∂µ + ieAµ)
in the effective Lagrangian density (4.8), to which we add the free contributions from (2.1). The

8
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result is

LQED = ¯̃ψ
(
iγµ∂µ −m

)
ψ̃ +g ¯̃ψγ0

(−→α )
γ0Σ0

(−→α )
ψ̃ +

1
2

(
Ȧi−∂ iA0)2− 1

4
Fi j F

i j + ḡεi jkȦi∂ j Ȧ
k

−(
e ¯̃ψγ0ψ̃

)
A0 +Lint(Ai , ψ̃), (4.19)

with the standard definition for the electromagnetic tensorFµν . Here have introduced the new
perturbation parameter̄g = ξ/M. As we can see from (4.19) the additional photon contribution is
not of the HOTD type. Nevertheless, the correction term proportional toḡ in Eq.(4.19) will demand
some modifications in the correct quantization procedure. In the sequel we denotee ¯̃ψγ0ψ̃ = J0.
The contributionLint(Ai , ψ̃), defining the interaction among fermions and transverse photons, has
a linear and quadratic dependence uponAi arising from the operator

(−→α )
γ0Σ0

(−→α )
in (4.8). Its

precise form is not relevant now for our purpose of quantizing the free sector of the theory.
In order to identify the proper normal modes of the photon it is convenient to proceed ac-

cording to the Hamiltonian formulation, which goes along similar lines that in the standard case.
Our notation here corresponds to that of a three-dimensional euclidean space where the relevant
vectors are:A = (Ai), Π = (Πi), ∇ = (∂i), i = 1,2,3, andε123 = 1. The corresponding canonically
conjugated momenta are

Π0 = 0, Πi =
(
δik +2ḡεi jk∂ j

)
Ȧk +∂iA

0. (4.20)

The photon sector of the Hamiltonian density, calculated to orderḡ, is

HQED,γ =
1
2

(Πi)
2 +

1
4

Fi j F
i j +

(
∂iΠi +J0)A0− ḡεi jkΠi∂ jΠk− Lint(Ai , ψ̃). (4.21)

The evolution of the constraintΠ0 = 0 produces the Gauss law∂iΠi + J0 = 0 as a secondary
constraint. Its further evolution must be consistent with current conservation via the equations of
motion, so that we recover the standard two first class constraints of electrodynamics. A first gauge
fixing is provided by choosing

Π0 = 0, A0 =− 1
∇2(J0 +∂0∂iA

i). (4.22)

To complete the gauge fixing it is convenient to separate the photon fields into longitudinal and
transverse components

ΠT
i = Ȧi

T +2ḡεi jk∂ j Ȧ
k
T , ΠL

i = Ȧi
L +∂iA

0, Ai
L =

1
∇2 ∂i(∂kA

k), (4.23)

and to demand the Coulomb gauge∂iAi = 0, which is equivalent to the requirement ofAi
L = 0.

In this way the Gauss law turns out to be identically satisfied in virtue of the properties∂iAi =
∂iAi

L, ∂iΠi = ∂iΠL
i together with choice (4.22) for A0. The longitudinal fields are fixed according

to
Ai

L = 0, ΠL
i =− 1

∇2 ∂iJ
0. (4.24)

In this way the remaining independent degrees of freedom are the transverse fields

Ai = Ai
T , ΠT

i = Ȧi
T +2ḡεi jk∂ j Ȧ

k
T , (4.25)

9



P
o
S
(
Q
G
-
P
h
)
0
4
0

Quantization of the Myers-Pospelov model L. Urrutia

satisfying the Poisson brackets

{
Ai

T(t,x), ΠT
m(t,y)

}
=

(
δim− ∂i∂m

∇2

)
δ 3(x−y), (4.26)

with the remaining been zero.
In order to allow for consistency among: (i) the equal time commutators for the transverse

fields arising from Eq.(4.26), (ii) the expansion of them in term of frequency modes and (iii)
the standard bosonic creation-annihilation operator commutation relations, we need to introduce
a canonical transformation (to orderḡ) which guaranties that̃ΠT

i = ∂0Ãi
T , as opposed to the second

equation (4.25). Such transformation is

Π̃T
i = (δik− ḡεisk∂s)ΠT

k , Ãi
T = (δik + ḡεisk∂s)Ak

T , (4.27)

which defines the physical fields of the theory. The normal mode expansion of the photon field is

Ãi
T(x) =

∫
d3k√
(2π)3 ∑

λ=±

√
1

2ωλ (k)

[
aλ (k)ε i(λ ,k)e−ikλ ·x + h.c.

]
. (4.28)

Hereaλ (k),a†
λ (k) are standard creation-annihilation operators and the complex numbersε i(λ ,k)

define a circularly polarized basis with helicityλ . The notation iskλ ·x= ωλ (k) t−k ·x, where the
modified positive frequencies (to first order in̄g) are

ωλ (k) = |k|(1−λ ḡ|k|). (4.29)

Again, the effective character of the theory manifests itself in the condition|k| < 1/ḡ = M/ξ ,
which will be further discussed in the last section.

In this way, the final photon Hamiltonian density arising from (4.21) reads

H̃MP, γ =
1
2
(Π̃T)2 +

(
1
2

B̃2− ḡB̃ · (∇× B̃)
)
− 1

2
J0 1

∇2J0− L̃int(ÃT , ψ̃). (4.30)

As usualB̃ = ∇× Ã. Let us emphasize that the contribution1
2B̃2− ḡB̃ ·(∇× B̃) = 1

2

(
B̃− ḡ∇× B̃

)2

is positive definite to order̄g. This can also be verified by calculating the normal ordered expression
for the free sector of the Hamiltonian arising from (4.30), using the expression (4.28), which leads
to the expected result

H̃0 =
∫

d3k ∑
λ=±

ωλ (k)a†
λ (k)aλ (k), (4.31)

in terms of the corresponding positive frequencies (4.29), to the order considered.
The transverse photon propagator is

i∆i j
T (x,y)≡ 〈0|T

(
Ãi

T (x) Ã j
T (y)

)
|0〉 . (4.32)

In momentum space we obtain

∆i j
T (k0,k) = ∑

λ=±

1

2ωλ (k)

(
ε i(λ ,k)ε j∗(λ ,k)(
k0−ωλ (k)+ iε

) − ε j(λ ,−k)ε i∗(λ ,−k)(
k0 +ωλ (k)− iε

)
)

. (4.33)

The required expressions for the polarization vectors contributions are explicitly given by

ε i(λ ,k)ε j∗(λ ,k) =
1
2

[
δi j − kik j

|k|2
]
−λ

i
2

[
εi jm

km

|k|
]
. (4.34)
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5. Final comments

We have constructed a perturbative modification to the classical version of the photon-fermion
sector of the Myers-Pospelov model, which has been subsequently quantized at the non-interacting
level. The LIV terms, which in general are of the HOTD character, are assumed to represent very
small perturbations over standard QED. In this way, the resulting interacting quantum theory will
be required to reproduce the Lorentz covariant results of standard QED in the limit when the LIV
parameters go to zero. That is to say, the quantum model should be able to smoothly interpolate
between the initial Lorentz violating theory and the final Lorentz preserving one. Such a realization
already exists in the literature for theories characterized by a fully dimensionless Lorentz violating
parameter [14]. In our case Lorentz invariance violation is characterized by the energy scaleM, so
that these methods would not be directly applicable.

To perform the free field quantization we have started at the classical level using the method of
Ref. [8], which allowed us to successfully deal with two of the general problems originating from
the HOTD character of the terms describing the Lorentz violations in the model: (i) the increase
in the number of degrees of freedom, which we must not allow in a perturbative modification of
standard QED, and (ii) the appearance of Hamiltonians which are not bounded from below, which
do not provide a good starting point for quantization. The calculation of interacting processes is
deferred for a future publication.

Some remarks regarding the effective character of the model, together with the associated char-
acteristic energy scales are now in order. The combinations of parametersξ/M,η1,2/M, denoted
collectively byΞ/M, appearing in Eqs. (2.1-2.2) are considered as remnants of a more fundamental
quantum gravity (QG) theory, which include effects that make space no longer describable in terms
of a continuum. Such parameters could arise in the process of calculating expectation values of
well defined QG operators in semiclassical states that describe Minkowski space-time, for exam-
ple, which would be necessary to derive the induced corrections to standard particle dynamics at
low energies. Let us emphasize that what is bounded by experiments or observations is the ratio
Ξ/M, so that a neat separation of the scaleM and the correction coefficientsΞ, that could even be
zero if no corrections arise, is not possible until a semiclassical calculation is correctly performed
starting from a full quantum theory. Initially, the naive expectation was that takingM = MPlanck

will be consistent withΞ values of order one, which is certainly not the case. Nevertheless, we
should not rule out rather unexpected values ofΞ or M until the correct calculation is done.

Let us assume that we have identified the correct separation inΞQG/MQG consistent with the
experimental bounds and arising from a correct semiclassical limit of the QG theory. Then we will
interpretMQG as the scale in which quantum effects are manifest and where space is characterized
by strong fluctuations forbidding its description as a continuum.

Nevertheless, another scalēM naturally arises in this approach, which is the one that separates
the continuum description of space from a foamy description related to quantum effects. That is
to say, for probe energiesE < M̄ we are definitely within the standard continuum description of
space where EFT methods should apply. For probe energiesE > M̄ we enter the realm of quantum
gravity and there we assume that any EFT has to be replaced by an alternative description. It is
natural that a very large number of the basic quantum cells of space characterized by the scale
(1/MQG)3 will contribute to the much larger cells characterizing a continuum description, so that

11
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we expectM̄ ¿MQG.
The maximum allowed momenta|kmax| ≈ MQG/ΞQG in the theory will be mathematically

dictated by the positivity of the normal modes energies (4.10), (4.29) and certainly constitutes an
extrapolation of the EFT that can be considered as the analogous of taking the maximum momen-
tum equal to infinity in the standard QED case.

Nevertheless, we need to introduce and additional suppression of the excitation modes in our
EFT which will be settled by the scalēM, thus defining the effective energy range of the model.
This is required by the EFT description of excitations in space which demands that the Compton
wave length1/|k| of the allowed excitations be larger than the scale1/M̄ setting the onset of
the continuum. The implementation of this proposal is directly related with our demand that the
quantum model constructed from the MP theory be such that it produces a continuous interpolation
between those physical results includingΞ corrections and those predicted by standard QED (Ξ =
0). Preliminary calculations of radiative corrections indicate that such suppression, together with
the desired limit, can be achieved by the following prescription: (i) even though the loop integrals
are all finite in the adopted MP setting, for each would be divergent integral in the limitΞ→ 0 we
introduce the required covariant Pauli-Villars type factor with mass parameterM̄ Àm2

1
k2−m2 →

1
k2−m2 −

1
k2− M̄2 →

1
k2−m2

(
M̄2

M̄2−k2

)
. (5.1)

Besides providing a cutoff for the excitation modes in the regionM̄ < |k| < MQG/ΞQG, further
motivation for such factor is that it would correspond to an adequate smooth regulator whenΞ→ 0.
(ii) Since the relevant scales are such thatM̄¿MQG/ΞQG, the correct limit to standard QED will be
defined by first takingΞQG/MQG→ 0, i.e. |kmax|→∞ and subsequentlȳM→∞. A renormalization
prescription consistent with this proposal needs to be implemented at the level of the MP model.

The work of CMR, LU and JDV has been partially supported by the projects DGAPA-UNAM
# IN109107, CONACYT # 47211-F and CONACYT # 55310.
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